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A, B, C, .. points of SIIUCTUIe . ... ... ...iinivnreanannnnnnns e e -

A Brea Of CrOSS SECUON .. ui.vienererieersrorsnsnnsnsensnnonnsnes .. in.2

A design acceleration........oovunenn. e tiraeeereeaaaa eeees g's

a BCCElerMUIOn. .\ttt iieenaant i iiineaneaaans Ceeeneeieans ceees in./sec.?

a, b, e, ... matrix elements . .......c i ann et ecteaerreenn -

b breadth of section............... ceeeanean Cetieieeeriee it ia.
distance from extreme fiber to neutral axis ........... ceeaas Ceeneas in.
damping CONSLANT . ..vvvivnnrnnnreoncasrnnasnanss et RPN k.-sec./in.

c.p.s. cycles persecond. ... .. . i ittt ittt s -

D divisor for normalization; final value = gA/8w? ... ... ..covvuvnnn. -

d depth of SECHION ..uivtiriiirntininananannaasan et eeieisieeaas in.

Jd deflection . .. . o iiiiiiii i ittt eteatsereennatstiranannanns in.

b modulus of elasticity (29,600 for steel) ........ciiiiiiinninn, e k.s.i.

Fe column strength (See DDS9110-4.) ............... Ceerreeeebaananans k.s.i.

Fy yield saeagth ... .. oot Cereerriiesaaeas cereieeaaaaas k.s.i.

f stress; axial szess .......... e Ceesntesarneanans chenena k.s.i.

fy bending Stress........ciieineniirncnonaas Ceeresatreeeaas k.s.i.

fg shear stress........coiiiiiiiiiiiiiiiine, k.s.i.

F.S factorof safety ........c.iiiiiiiannnen eesen Ceraeanean cetaeene -

G modulus of elasticity in shear (11,400 for steel)..................t. k.s.i.

2

2 uccelerntion of gravity (386) ... ..ottt N in./sec.
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Nomenclature Unit

dme interval L., sec.
height from base to center of gravity ...................... ... .. ... in.
high-tensile steel ..... ... ... . . -
moment of inertia of CIOSS SECLON. ... .\ouvuevn e ennnnnnnnnnnns . in.4
spring constant (StMess). ... ... ittt k./in.
structural parameter (effective volume) .. ... .. .uueennnennnnn .. in3
required structural parameter = Q/q ... .uiurinein e, in.3
kip (1000 1bs.) . ..o e e -
kips per square inch............................. et -
leagth of member. ... ... ..o i in.
length effective in absorbing energy ... ...vuiie i, in.
mass (=W/g) ............. i, e teeaaa k.-sec.2/in.
bending moment ... ... ... .o i in.-k.
moment per unit load. ... ... et in
medium steel ................. Pt eare e e -
millisecond (0.00Ll sec.) ......coovvnnnn... et eeteeenat e -
rigid-base natural frequency of vibration ... Ceeeeretiiereaaa reaan c.p.s.
load; design load .............. crseraesaans eteesenseteecanan .. k.
force on member per unit load....... et erieeaaae Ceetrreeeaann -
design emergy; internal energy of structure ........ e, in.k.
energy in unit volume of material at yield suress ............... e k./in.2
TERACHON ...\ itiitiiiniiininnnnnn., e et ee it k.
radius of gyration of cross section .............. feterereit et .
statical moment of area abour neutral axis........... et in.3
duration of load or motion ..................... Ceteeeieiar e .. sec.
M . e e e sec. or msec.
displucement; wmplitude . .......... ... ... ... ... ... . .. . ... in.
design velocity; step velocity change ..................... ... . ... in./sec.
shearing force . ... ... . . k.
velocity ... ... i, et ete ittt in./sec.
shear per unit load ...... ettt ieii i, N Cheeeieaaa -
weighe . ................... Cetieriieae R e etetreanaeaeeen. k.
modal effective weight = (EWu)2/SWul ....... et ireeiieieaiaa, k.
wide-flange beam section (Precedmg and following nunbers md.lcnte

depth, in inches, and unit weight, in lbs. per linear foot,

respectively.)...... T O Ceresenana -
sectionmodulus .......... ... .. .o ..., fheterireeeeans . in.3
influence coefficient times a constant ................ e . -
influence coefficient (deflection from unit load) ................. . in./k.
indicates summation.. ... T T .. -
angular Jeformation of beam .. ... . oL o oo L radian

nacural ciccular frequency (=2m7n) .. .. .. ... ..., e rad./sec.
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Subscripts. The following subscripts are used, in addition to those whose meanings are indicated
above:

Symbol Nomenclature
A,B, C, .. panel points, load points
AB, BC, etc. These indicate that values are applicable between points designated.
a, b, e, .. columns climinated from matrix for 2nd, 3rd, 4th, ...mode§
" basec, to which foundation is attached
« from damping force
E value at yield stress
v, 2,8, .00 row of matrix
) 1,2,3, .. column of matnix
K from spring force
o initial value
P plastic
v web of beam
x longitudinal (fore-and-aft) direction
y athwartship direction
z vertical direction
0 limit-design value
12,08, . modes of vibration (second subscript when first indicates deflection)
L2, 3, .oon deflections of masses (centers of gravity of lumped masses); corresponding load points

(with load in direction of deflection)

1-1, 1-2, etc. These indicate deflections and load points for influence coefficients, which may be
interchanged, in accordance with Maxwell’s theorem. :

9110-7-b. Introduction.

The nature of the loading. — Under explosive loading, the shell of a ship is subjected to a very high
pressure for a brief period of time. This imparts high accelerations to the loaded parts. As the shell
moves, the ship’s structure is deformed and transmits forces to the remainder of the hull and to masses at-
tached to it. Inertia forces oppose the motion of the hull. Ultimately, the ship is brought to rest by grav-
ity forces and hydrodynamic resistances. Figure 1 shows typical velocity-time curves for two locations
on a destroyer bulkhead during a full-scale shock test.

Response of structure. —If a foundation is sufficiently rigid, it will bring the mass it supports to the
same velocity as the base (hull structure to which the foundation is attached) within the period during
which the latter is accelerating. For a constunt base acceleration, applied instantaneously, the maximum
acceleration of an elastically supported mass would be twice thatof the base. With a more flexible foun-
dation, however, the natural period of vibration may be much greater than the interval of base acceleration.
In this case, relative movement between base and mass limits the acceleration applied to the latter. A
step change in base velocity would give the mass a relative velocity of equal magnitude. These two
idealized types of motion, shown by figure 2, provide a basis for empirical design criteria.

Design criteria. — For design of foundations and similar structures, shock inputs may be specified in
terms of the following: :

A static equivalent acceleration (A), or design load (P).
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A step change in velocity (V), or the energy associated therewith (Q).
Only the lesser of the two requirements need be satisfied.

The values of the inputs used for design muse he obrained from applicable specifications. They will
depend upon the type of ship, weight of equipment, locution within the ship, the service required, anl
rection of loading. The criteria used herein are to be considered only us illustrative.

In general, the design loads or energies are associuted with yicld strength (Fy), column strengeh (o),
ultimate compressive screngeh of placing, or similar limiting value; that is, no factor of safety (F.S)) is
applied to the structure as a whole. For individual parts of the structure, however, factors of safety may

-be specified.

Shocks of relatively low intensity should be resisted without permanent deformation. For greater in-
tensities, yielding may be permissible if accurate alinement need not be preserved. Under extreme condi-
tions, deformacion is inevimble, but it is important that items of equipment be prevented from tearing loose
and becoming missiles. If connections are adequate and materials are sufficiently ductile, shocks of
greater than design intensity will produce permanent deformation, but not complete seructural failure as
would an excessive acatic load. Beams, especially, are able to survive shocks far greater than those
which just give yield stress. And, although columns are more likely to be weakened by deformation, the

Applicability of this design daca sheet. - The design procedure outlined in 9110-7-c is applicable to a
foundation supporting equipment which is to be treated as a rigid mass, when criteria are stated in terms
of accelerations or loads, aad energies or velocities. Deflection is assumed to be essentally in the di-
rection of the shock motion. '

When criteria are similarly specified but the motion involves several deflection components simulta-
neously, or more than one mass, 9110-7-d applies. An example illustrates calculation of mode shapes and
frequencies of a multi-mass system. The normal-mode method of NAVSHIPS 250-423-30 is then used to
compute shock responses.

9110-7-¢ shows how loadings, applicable to a single-mass system, aan be more accurately defined by
means of shock specoa.

If the mass is supported in such a way that its displacement relative to the base can be very large, it
is necessary to examine the time history of the motion to determine forces and deformations. This applies
w shock mitigating devices, but not ro foundations generally. 9110-7-f gives an approximate method which
may be used to establish spectra for vurious motions or forces, or to amlyrze more complex systems, o
those whose response cannot be upproximated by the load-deflection curve of figure 3.

With very soft mountings, forces other than shock loadings often govem design. For example, in a
seaway the ship has comparatively low accelerations, bur amplitudes preclude their artenuation by defor-
mazion of supports.

9110-7-c. Design of Single-Mass Systems Based on Load and Energy Criteria.

Load criteria. —1f acceleration govems, design for shock loadings is no different from design for static
loadings. In fact, many loads other than those from underwacer explosion are similarly reduced, either ex-
plicitly or empirically, to seatic equivalents. For simple structures, the design procedure is then compam-
tvely direct. Required section moduli can be calculated for beams, and sectional areas for axially loaded
members. The latter muse sometimes, of course, be revised to sujt slendemess ratios, which are unknown
until specific sections are selected. Bending moments may depend on relntive stiffnesses, but by using
limit design principles this difficulty is minimized.

Energy criteria. —If a seructure is large, particularly if high-strength materials are used, the energy
(or velocity) criteria may permit design for smaller loads. For a simple structure, a direct design proce-
dure to obmin the required volume Sf material may then be applicable, if the approximate proportions andd
patterns of stresses are predictable. For instance, if the foundacion consists essentially of beums of
known length, an "1 section can be chosen to satisfy an energy criterion ulmost as readily as onc having
the section modulus corresponding to & given load. If the structure is more complex, the most feasible
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procedure may be to design for an assumed load, calculate the energy which this structure can absorb, and
then revise as necessary. The assumed load need never be greater than the specified load criterion.

An energy criterion implies that the intemal energy absorbed by the structure is equal to the energy
imparted to the mass by giving it a velocity relative to the ship structure. Energy (Q) and velocity are re-
lated by the formula

wv2
Q'j—x—,

where W is the weight supported and g is the acceleration of gravity. Ordinarily it will be specified thae
all or a stated portion of this energy be absorbed elastically. 4

The energy absorbed by a unit volume of material is the product of the strain and the mean scress.
Under tensile or compressive stress (f) up to the elastc limie, it is f2/2E. (E is the modulus of elastic-
ity.) For design of simple structures, it is convenient to let "q" be the energy in a unit volume of material
at the stress corresponding to yield strength. The required effective volume of material is then Kg = Q/q,
where q = Fy2/2E.

If a member is axially loaded to yield strength throughout, its effective volume, Kg, is the actual
volume. If not, Kg must be reduced to allow for variation in the value of (f/Fy)z. At a beam cross sec-
tion of area, A, where bending stress, fg, has reached yield at the extreme fibers, integration of
(fg /Fy)2dA gives (t/c)2A. (r is the madius of gyration and c is the maximum distance from the neutral
axis.) The equivalent, uniformly-stressed area is therefore Z/c. (Z is the section modulus.) Figure 4
indicates values of Z/c in temms of area for a number of shapes.

Allowance must also be made for any variations in stresses along the beam. If curves of bending
moment (M) and Z/c are smooth for a beam or portion thereof, Simpson’s first rule provides a convenient
means of evaluating the effective volume. Then, if C is the midpoint of beam, AB (of length, L, g),

o] (2L (2

As long as M/Z does not exceed yield stress, the internal energy of the beam may be written

' 2 2 2
Q- LAB[MA LM M ]
12E IA IC lB

where | and I.. are the moments of inertia of the sections indicated by the subscripts. If the beam

1
A "B
has constant cross section and uniformly varying moment, M~ may be replaced by (N, + MB)/Z. Then

Las 2 2
Q- g [MAZ + MaMg + Mp?] -

When stressed to yield at A

g2 VIRY L Mo \2
% - _______[ JL(..B.)} X .(__A_s)(z_)[l +..~.-;+(_g>].
GEIAB M, M, 3 < MA MA

Note that if MB = 0, as on a candlever, or if MB - =M,,

- (22)(2).

That in, effective length, Can - Lan/3 Loy iv minimum (L, /4) when M = 0.3 M,.

]
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Shear. ~ A structure comprised of short, deep beams may absorb a considerable amount of energy
through shear deformation. A unit volume of elastic macerial, at suess, fg, increases Q by f52/2G. For
steel, the modulus in shear, G, is about 11,400 ksi. An allowable limit of 0.6 Fy is usually specified
for fo.

The shear stress at any paint on a cross section is given by the expression, fs = VS/Ib, where V is
the total shear, S is the statical moment of area (beyond the point in question) about the neutral axis, |
is the moment of inertia of the entire cross section, and b is the breadth of the section at the point. For
most beams, howeves, oanly an average stress, based on web area, need be calculated. That is

fs e V/Ay .

Ordinarily, it need caly be established that the bending and shear stresses are within their respective
allowable limits. In special cases, however, consideration of combined stresses may be required.

Limit design. — A fundameneal principle of limit design is that a structure will not collapse if a pattemn
of stresaes, not exceeding yield, can be found to hold the applied loads in equilibrium. As compared to
the purely elastic coadition, the application of limit design genenally pemits a redistribution of bending
moments and a redisuribution of suesses over the cross sections where plastic hinges are formed.

For the fixed-end beams of Armangement No. 4 (see figure Xd)), elastic theory indicates moments at C
and D which are caly 43 percent of the end moments (see figure 6(b)). However, the formation of plastic
hinges at A and B would not lead o collapse of the structure. Slight roaation at these points would per-
mit moments between C and D to increase undl the full swength of the beams is developed there also.
(Even for a strictly elastic condition, there would probably be enough end rotation to make the equaj-
moment assumptioa a realistic one.) With the formation of a third hinge at C or D, the structure would
become s mechanism and, under static load, collapse would ensue. Under shock loading, complete col-
lapse would be unlikely, but there might be significant permanent deformation.

As each plastic hinge begins to form, the zone of yield stress spreads from the outermost fibers to-
ward the neutral axis. In the limiting coadition (in pure bending), half che area is in tension and half in
compeession. For an “I® section, bending in its strong direction, the plastic section modulus is only about
14 percent greater than the elastic one, since the flange stress can change but little. For the web alone,
of sny rectangular section of breadth, b, and depch, d, the increase is from bd2/6 to bd2/4, or 50 percent.
For unsymmetrical sections, and those under simultaneous axial loads, plastic moduli may be considerably
greater than the elastic values.

In computing the strength of a structure for comparison with load criteria, it will generally be permis-
sible to take advaatage of the rediseribution of both moments and stresses. However, the normal procedure
for computing intemal energy is based on the elastic properties of sections, although moment diagrams may
be adjusted. Increased swength at moment peaks would pemit an increase in the elastic energy stored in
s beam, but it should be bome in mind that this criterion is only a rough measure of shock resistance. In
the calculations which follow, the aim has been to obcain s reasonably consistent empirical basis for de-
sign, without uowarranted refinements, particularly those not routinely considered for other design loadings.

Vibration frequency. — Natural frequency is an important parameter in the consideration of shock load-
ings. Figure 12, discussed more fully in 9110-7-¢, shows the relationship between values calculated for
tite examples and the criteria used for vertical loadings.

If a load, P, imparts an intemal energy, Q, to a linear elastic system, the correspoading external
wotk is P/2 times the deflection. Stiffness, K, is therefore equal to P2/2Q. Hence the natural frequency
of a simple system is given by:

 /E ()

Another foan of the frequency formula is 0 = 3.13/\/5W c.p.s., where § is the "influence coefficient,” or
deflection under unit load. (See 9110-7-d for examples of calculations.) 8W is the "seatic deflection”® of
the mass,
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The foregoing formulas are based on the assumption that the vibratory motion is in the direction of the
applied forces, and that the effect of rotary inertia is negligible. It should be noted, also, that actual fre-
quencies tend to be lower than calculated values because the ship structure supporting the foundation 15
never absolutely rigid. Thus the true values of Q and 5 may be increased upprecinbly by stresses in
structure not considered in urriving at the design values. As regards the effects of shock loading on the
foundation itself, neglect of the energy stored in the base structure gives an error on the safe side.

Examples. — Foundation structure will be designed to support a weight of 14 k., including allowance
for the weight of the foundation itself. (Generally about half of the foundation weight is lumped with: that
of the equipment.) Figure 5 shows the various structural arrangements considered.

LOAD AND ENERGY CRITERIA

Design Ratios Design Values
Direction P/W Q/we - Q- ok
=A) | (=V%/2g) . 1o,
Vertical 40 5.2 P, = 560 | Q, = 72.8
Athwartship 24 2.6 P, =~ 336 Q - 36.4
Longitudinal 16 1.3 P, =224 |Q =182

*Corresponding value of P/W to be at least 6.

Atrungement No. 1. — All members are loaded axially. First the legs are designed to suit the vertical
load criterion. Elastic energy is then calculated but found to be insufficient to permit a reduction in scaat-
lings. Although the specified athwartship load is less than the vertical, it requires increased suength in
one pair of legs. (The use of X-bracing instead of the single diagonals would give a more nearly uniform
distribution of stresses.) This time, however, the energy capacity of the structure (Qg,) exceeds the re-
quired value (Q,). Scantlings are reduced accordingly, and energy is recalculaced. Design for the longi-
tudinal criteria would be essentially similar and is omitted. For information, vibration frequencies (n,
and n,) are computed from the load and energy data.

The equipment is to be supported by a framework, as shown ia figure 5(a). Medium sceel (MS) will be
uned, giving Fy - 33 k.~.1., and g (for the energy criteria) = (33)2/(2 < 29,600) - 0.0184 k./in.z,

Vertical load: If the slendemess ratio is 40 or less, Fc = Fy. The required ares for each of
four equal legs is then

A = P,/4Fy = 560/(4 x 33) = 4.24 in.2
Vertical energy:

KQz = Qz/q = 72.8/0.0184 = 3960 in.3
Kgz = 4AL = 4 x 4.24 x 60 = 1020 in.3 < 3960.

Hence the load criterion governs.

Athwartship load: Required area for left leg, AC, is obtained by taking momeats about inter-
section of leg, BD, and diagonal, AD.

Aac = P,(Lpp + h)/2FyLcp = 336(60 + 20)/(2 x 33 x 43) = 9.05 in.2
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For right leg, BD, take moments about A.
App = P,h/2FyLep = 336 x 20/2970 = 2.0 in.2,

whick is less chan the 4.24 required for the vertical load.
zonm] components,

For the diagonal, sincc the legs exert no hori-

5 in.2
Aap = P,Lyp/2FyLep = 336 x 75/2970 - 8.48 in.

Atchwareship energy:

= = / - in 3
KQY = Qy/q = 36.4/0.0184 = 1980 in.

For scantlings with the minimum arcas required for P, and P

— - . - , ]
2~ A L | ! gy b B
Member in.2 . ! k.s.1. (1 & | in.}
-
Left legs 2% 9.05 60 ! 33 L0001 1090
Right legs 2x 4.24 60 17.6 0.284 140
Diagonals | 2x 8.48 s 33 | 1o 1270
Structural paramecer: KEy = EAL(f/FY)2 . 2500 in.3

Since this exceeds Kqy, scantlings may be reduced. If all members could he changed proportionately, the
reduction would be 1980/2500 = 0.79. However, design of the right leg is controlled by the vertical load,
and the minimum areas cannot be provided exactly. The somcwhat greater scantlings shown by the tahle
below will therefore be used.

Load to give yield stress in leg, AC,

PEy = ZAACFYLCD/(LBD b h) -2 x 810 < 3 x 4SA60 ¢ 0 01 k.
Corresponding stress in leg, BD, is
fBD = PEyh/ZABDLCD = 301 x 20/(2 x 4.41 x 45) = 15.2 k.s.1.
Stress in diagonal, AD, is
fap = Pg,Lap/2A,pLcp = 301 x 75/(2 x 8.10 x 45) = 31.0 k.s...
L/! = 75/137 = 55', Fcn 31 k.S.i.
| o, Thk. Ix A L f P m.u/n-’y)ﬂ.
Member in. in. in.2 in. k.s.i. () in.} :
Left legs 4.5 I 0.674 2x8.10 60 33 luso | 970
Right legs 4.5 0.337 | 2x 4.41 50 15.2 ¢ T |
1
Diagonals 4.5 0.674 ! 2x 8.10 7s 1 3 1882 1 1070 |
] I i
—— 1
Structura! parameter: KE;- = }_‘,AL(f/;:Y)Z = 2150 in.} }
J
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Vibration frequencies: In the athwartship direction,

PEy - 301 k., QEy = KEyq = 2150 x 0.0184 = 39.6 in. -k.
n, = 221, Pg,/VQg,V = 2.21 x 301/\/39.6 x 14 = 28 c.p.s.

In the vertical direction, frequency can be computed similarly (using values of P and Q which represent
the structure, rather than the design criteria), giving n, = 89 c.p.s. An assumption somewhat less con-
servative than that the vertical load is equally divided among the four legs would be that they are equally
stressed in spite of differences in area. In that case, stiffness would be equal to ZAE/L. Then

K = 28.10 + 4.41) x 29,600/60 = 12,300 k./ia.,

and

n, = 3.13VK/W = 3.13\/1Z,300/14 = 93 c.p.s.

Arrangement No. 2. — Arrangement No. 2 consists primarily of a pair of longitudinal girders. Design is
based on the vertical load criterion and limit-design section modulus. Energy, in bending and shear, is
then calculated. Qg, is less than Q, so the beam size may not be changed.

For high-tensile-steel (HTS), FY = 45 k.s.i. and q = 0.034 k./in.2. The girders are simply sup-
ported and are considered rigid in way of the equipment.

Vertical load: The required section modulus for each girder is

P,L,c/4Fy = 560 x 36/(4x 45) = 112 in.3
If the limit-design strength is used, an 18 WF 55 gives
Zy= 1142 = 1.14 x 98.2 = 112in.3
Corresponding average shear stress in webs is
fg = Pz/4A' = $60/4(0.390 x 16.9) = 21.2 k.s.i. (which is less than 0.6 FY)'_
Vertical energy: Bending energy at yield stress is
(2/3)(Ly - + Ly ) NZ/e) 4 ~ (2/3)(36 + 36)(98.2/9.06)(0.034) = 17.7 in.-k.
Load corresponding to yield stress in bending is
Pp, = 4ZFy/L,c = 4 x 98.2 x 45/36 = 491 k.; fg = 18.6 k.s.i.
Approximate shear energy is
4AL L, (f2/2G) = 4 x 6.6 x 36 x 18.62/(2% 11,400) = 14.4 ink..
Total intemnal energy is then
Qp, = 17.7 + 14.4 = 32.1 in.k.
Thin is less than the required value (Q, - 72.8), so the load criterion governs.

Athwartship and longitudinal criterin: The section modulus of an 18WF 355 beam is only 11.1 in.3
tor bending in the weaker direction. Although the limit-design section modulus is about 1.5 times this, it
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is evident that the girders, acting independently, would have inadequate strength. The usual design i
tice is to tie the two girders together by means of cross bracing or deck plating. If this is done, the hori-
zontal loads are not likely to cause stresses as great as those from vertical loading. Overturning moments
must be taken into account, but these would be significant oaly if the center of gravity were high compared
to the spacing of the girders. If it is necessary to consider the energy criteria, it may be noted that the
ends of the girders would be subject to vertical moments varying from zero at the supports to equal maxima
at the equipment. The value of Qg, due to bending, is therefore the same fos all three directions, excepe
that stresses may have to be reduced to suit the horizontal components.

Arrangement No. 3. - This is similar to Arrangement No. 2, but the equipment is supported at four
points so chat the central parts of the girders can bend. This increases flexibility and energy. capacity
without affecting strength. For an elastic-plastic design, 4 smaller value of Q, permits a reduction in
beam scanclings. Both bending und shear effects arc culculated, but the impartance of the Liter decreases
as the depth-to-span mtio decreases. An estimate ix made of the permuinent deturmation resulting from the
full, elastic-design motion input. To illustrace che calculation of energy under combined uxial and beading
suesses, Pp, (the longitudinal load carresponding to yield stress) and Qg x are computed.

The addition o Qp,, as compared to Arrangement No. 2, is

2Lcp(Z/c) g = 2 x 48 x 10.84 x 0.034 = 35.4 in.-k.,

QEz = 32.1 + 35.4 = 67.5 in. k.,

which is sdll less than the given elastic-design value of Q,. Assume, however, chat the specifications
require that anly 40 percent of Q, need be absorbed elastically. Then 0.40 x 72.8 = 29.]1 < 67.5.

Z/c for any WF section, loaded in the strong direction, is about (2/3)A (see figure 4). Required sec-
tional area is therefore reduced, approximately proportionately, from the area of the 18WESS section.

16.19 x 29.1/67.% = 7.0 in.2

A 12WF27 section gives the following:
In bending,

Ke, = AZ/c)(Lyc/3 + Lep + LDB/IB) = 2(34.1/5.98)(12 + 48 + 12) = 820 in.}
Qp, = Kg,q = 820 x 0.034 = 27.9 in.k.
Pg, = ‘ZFY/LAC = 4 x 34.1 x 45/36 = 170 k.
In shear, since reactions are equal,
fs - PEx/‘A' = 170/4(0.240 x 11.15) - 159 k.s.i. > 0.6 Fy
Qg, = 2Ay(Lyc + Lpp)fs?/26
= 2 x 268(36 + 36)(15.9)3/22,800 = 4.3 in.k.

Toeal Qp; = 27.9 + 4.3 = 32.2 in.-k., about 44 percent of the full, elastic-design value. (Note that
for the shailower beam, shear soesses and deflections are of less importaace.)
Pemaaent deformation, under the specified design input, may be approximated as follows:
Energy to be absorbed plastically,

Qpy = Q, - Q; = 72.8 - 32.2 = 40.6 in.-k.
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For each girder,
Mo ~ 1.L14 ZFy = 1.14 x 34.1 x 45 = 1750 in.-k.
Rotation about plastic hinge, at D,
¢ = Qp,/2My = 40.6/(2 x 1750) = 0.0116 rad.
Corresponding vertical deflection at hinge,
dp = @¢L,pLpp/Lag = 0.0116 x 84 x 36/120 = 0.29 in.

If the structure were loaded so as to just reach the limit-design moment throughout the central sec-
tions of the girders, these would be bent in circular curves. In practice, even with perfectly symmetrical
weight and structure, any component of longitudinal motion would lead to the formation of hinges at one
end of the equipment. The assumption of a single hinge in each girder is therefore appropriate.

Longitudinal load criterion: For 12WF27 sections, with horizoatal reactions at one end oaly, the
maximum total of axial and bending stresses is

£ oPx, Pblac | 224 224x20x36
™A U 2A T 2L, ,Z | 2x7.97 | 2x120x34.1

= 14.1 + 19.7 = 33.8 < 45 k.s.i.

Longitudinal energy criterion: This would not need to be investigated, since the scantlings are
already determined and the specified longitudinal load does not give excessive stresses. The following
calculations are to illustrate the method. The horizontal forces are assumed equally divided between the
two ends of the equipment (with the girders supported horizontally at one end only). Shearing stresses are
small and are neglected.

P, = (45/33.8) x 224 = 298k.
Axial stress in supported ends,

fac = Pi,/2A = 298/(2 % 7.97) = 18.7 k.s.i.
Axial stress in central portons,

fep = fAc/2 = 9.3 k.si.
Bending stress at ends of equipmeat,

fg = PphL,c/2L,pZ = 298 x 20 x 36/(2 x 120 x 34.1) = 26.2 k.s.i.
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From axial strains 2‘x2A _L d ) (/¥ )2 ZAL”/"Y)
in. in. k.s.i. Y in.
Supported ends 2x7.97 36 18.7 0.173 99
Central portions 2x7.97 48 9.3 0.043 33
Unsupported ends 2% 7.97 36 0 0 0

P
. . 2x Z/c L £ A2Z/c)L(fn/F )2
From bending strai . B . 2 Y
BommAs 1 a2 in. ks, | (B/Fy) oS

Supported ends 2x5.70 36/3 26.2 0.339 46
Central portioas 2% 5.70 48/3 26.2 0.339 62
Unsupported ends 2x 5.70 36/3 26.2 0.339 46

Seructural parameter: K, = SAL(E/Fy) + X2/t /Fy)? = 286 in.3

Qg, = Kg,q = 286 x 0.034 = 9.7 in.-k.

Armangemeat No. 4. — This is the same as Arrangement No. 3, except that the ends of the girders are
attached to rigid structure. If the ends were truly fixed, the moment in way of the equipment, under verti-
cal loading, would be oaly 43 percent of that at the ends and of opposite sign (see figure 6(b)). Under
such conditicas, the girders could absorb only a fraction of the energy that they can when simply sup-
poeted. A limit-design condition, with end and field moments equal, is simpler and more realistic, pro-
~vitled the supporting structure is designed accordingly. With equal moments, bending energy is the same
as for simple supports, while the design load is doubled. Permanent deformation, for the elastic-plastic
design, is halved.

For the symmetrical armngement of figure $5(d), with fixed ends,

e () {8 G- e}

= (2% 5.70) {(24) [1 - (0.43) + (0.43)2] + (48)(0.43)2} = 306 < 820 in.}

A more realistic assumption is that the bending moment between load points is equal to that at the
-supports. Even if the supporting structure permitted no rotation of the girder ends, a redistribution of mo-
meats would take place before any significant plastic deformation occurs. Bending energy is the same
as:for Armangement No. 3, but Py is incieased by a factor of 2. However, the webs require reinforcement
to avoid excessive shear stresses.

Beyond the elastic range, three hinges would form prior to collapse of the structure. With the angle
ac.ome load point, angles at the supports would be ¢(Lpp/Lag) and G (Lap/Lag) As aresult, ¢
would be one-half the value found for Arrangement 3,

Arrangement No. 5. ~ Armangement $ is the same as Arrangement 3, except that allowance is made for
vertical deformation of the supporting structure. Column supports are designed to take the simple- support
remctions from the girder ends, under vertical loading. Their contribution to cnergy is found to be com-
pamtively small.
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The suength of the supports should be sufficient to develop the full plastic moment of the 12WF27
HTS girders. If a factor of safety of 1.25 is specified, each vertical leg must be able to withstand a load
of at least

1.25 My/Lpg = 1.25 x 1750/36 = 60.8 k.
FFor 2.875-inch O.D. x 0.203-inch thick HTS tubing,

A = 1.704 in.2,
L/t = 48/0.95 = 51,
FC = 40 k.s.i.,
AF. = 68.2 k. > 60.8.

Axial stress in legs at limit-design load on beams:

f = My/L, A = 1750/(36 x 1.704) = 28.5 k.s.i.
Contribution of legs to K¢ :

4AL(!’/FY)2 = 4 x 1.704 x 48(28.5/45)2 = 130 in.}
Total (neglecting shear):

Kg, = 820 + 130 = 950 in.

The assumptions upon which these values are based are not suictly consistent, theoretically. The energy
value for the beams corresponds to yield stress at the extreme fibers, rather than the limit design load.
The discrepancy is insignificant from the point of view of practical design.

Arrangement No. 6. — Sometimes the shock resistance of a structure can be increased significandy by
removing material in such a way thac the distribution of stresses is more nearly uniform. Arrangement No.
6 illustrates the calculation of energy capacity for mpered girder ends.

Simpson’s first rule is used to compute the contribution of each end section to K,.

fn @
. Z ¢ ‘zé'(tma ) x Mult.
. ax
Scation M/Mm ax in.3 fp /fmu in. o2
end 0 14.7 0 3.00 0 x 1
18 inches from end 0.5 24.1 .707 4.49 2.68 x 4
load point ) 1 34.1 1 5.98 5.70x 1
f 2
Total b3 E?E ( B‘) x Mult] - 16.42 in.2
¢ \fma

fo \2
(Ke2)ac = fac 2[..2.( L ) x Mult]- (36/6)(16.42) = 98.5 in.3

6 € \Imax

For the full-depth cnd section, the corresponding value is oaly

(Lyc/3)(Z/c) = (36/3)(5.70) = 68.4 in.3
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9110-7-d. Analysis of Multi-Mass Systems for Specified Acceleration and Velocity Inputs.

If a foundation and the equipment it supports are to be considered as made up of several masses, a
trial-and-error procedure must be used in lieu of the comparatively direct design method of 9110-7-c. This
procedure consists of the following steps:

1. Preliminary design—that is, tentative selection of scantlings for the principal structural
members. ’

2. The calculation of influence coefficients. The system must be divided into a suitable number
of lumped masses. The deflection components of each are then computed for unit forces applied directly
to it and, successively, to every other mass.

3. The detemmination of mode shapes and frequencies.

4. The calculadon of shock forces resulting from the specified acceleration and velocity inputs.

3. The computation of stresses in the various structural members for comparison with allowable
values. [f stresses are excessive, scantlings must he chunged and the whole process revised us nccessary.

The above steps are described in detail below, and illustrated by examplex.

Preliminary Design. — In general, scanclings will first be selected to suit an assumed load-weight ratio,
applied uniformly to all masses.

If design inputs are given in terms of accelerations and velocities which decrease as modal weighe(¥)
increases, it is apparent that the considemation of several modal weights will involve greater design values
than would a single large mass having the same total weight. Also, because higher modes give altemating
directions of loading, their combination with the first mode must be assumed to be the most adverse for
each part of the structure. These factors should be allowed for when proportioning the swucture. No gen-
eral rule can be given for quantitacively evaluating the higher modes in advance of analysis, but the exam-
ples below may provide some clues. .

Influence coefficients. — Deflections under unit loads can sometimes be calculated by handbook for-
mulas. A more general procedure is as follows:

Bending deflections. — The deflection of point 1 due to a unit load at point 2 (or vice versa) cun be
found by integrating, over the entire structure, the value of (mymy /EDdL, where m; and m, are thc bend-
ing moments due to unit loads 1 and 2 (in specific directons), respectively. The moments used in these
calculations should, in general, be consistent with elastic structural response. However, assumptions
which simplify analysis, such as those of the two-mass example, will frequently be jusdified.

1f the curves of m), my, and | are smooth for a member AB whose midpoint is C, Simpson’s first
rule provides a convenient means of evaluating the integral. Then

L :
J' 1% g o LaB|miamaa | 4micmac mppmap |
o EI  6E | 1, I Iy

If m, and m, wary linearly, (m;, + mla)/Z may be substituted for m;c, and (m,, + m,5)/2 for
mzc. ‘r‘nﬂ

. A
'[ 122 g . LAB[’"IA"‘ZA o (1At mipd(ma, ¢ mpp) "‘w’“za}
, El 6E | 1, Ic I,

Thus the only moments which need to be calculated for such a portion of beam are those at the ends.
If I is constant, the last formula reduces to

L
m,m L m, ,.m m,m
172 AB 1AT2B 1B 724
—- dL = m,,m + m
J; El 3, [ 1AM24 ¢+ 3 3 + Mg 28].
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To find the bending deflection of a load-point under a unit load (in the direction of the deflection) at
that point, let m; = m, = m. Then for a uniform beam with straight-line moment curve

Fmly Las [ 2 2
, T L=:3EIAB[mA +mAmB+mB].

Deflections from axial stresses. —Similar expressions give deflections resulting from axial loads.
That is, the deflection at point 1 from unit load at point 2 is given by the integral of (pyp,/AE)dL, where
P, and p, are the forces from unit loads 1 and 2, respectively. However, since axial forces change only
at the mass locations and structural panel points, the effect of a portion of a uniform member, between
load points, is (L/AE)(plpz); (L/AE)p? for deflection at the load point.

Shear deflections. Unless the depth of a beam is small compared to the distances from supports to
loads, shear deflections (and stresses) may be significant. If average sturesses, based on web areas as in
the approximate formula of 9110-7-c, are used, shear deflection 1 from unit load 2 can be obtained by eval-

uating, for each member,
Lfv,v
J, (58)=
o AyG

where v, and v, are the shears due to unit loads 1 and 2, respectively. For each portion of beam of
length L, of constant web area, and under constant shear, this integral reduces to

"ol

AyG

Total deflecuons. — Adding deflections resulting from strains, in all members, under the various kinds
of stress, gives the influence coefficient, 8, for each combination of load and deflection. If a load in one
direction causes significant deflections in other directions, two or three components may have to be coa-
sidered. Each component gives the system a degree of freedom.

Mode shapes and natural frequencies. —If a structure is vibmting at a natuml circular frequency, w,
the maximum inertia force acting on each mass is (W/g)w?u, where u is the amplitude of the mass in
question. Under the action of such forces, the structure is deformed elastically. That is, for each mode
of free vibration, the following equations must be satisfied.

w v
w =1 w?u 8, + —3@2%81_2 v 2otus)

8 8 4

v v a 2 .
u, = 1 wzulsz,l + -;10)2\1282_2 et ‘i—-“’ Ua82.0

8
v v
1 2 2 2 n_ 2
U w8 S wfud L+l —wfu s,
n 8 1¥%a-1 8 2%a-2 3 a n-n

For a two-degree-of-freedom system, the eq‘untions of motioa are;

v w
1 2 2 2 .
u = ;—.w b+ ;—m w8, 5%
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uzz.w_lwzus +w2w2u8
8 1¥2-1 2 272-2

These equations can be solved for two sets of compatible values of @ and the ratio, uy/uy.

R )
(3 )wz 8.1 Y2 81, Y/ L0 \814/ ]
' L
1%1.1 , [62'2 ) (81~2)2J

81-1 81-1
4 [¥1\/(8;., R |
s\ \Br )\ W8 p0? '
Although these formulas ippcar rather complex, they can easily be solved from the three ratios, (Wl/VIz),
(82_2/81_1), and (5,_,/8,_,), and the quandty, (8/%,8,_,), as in the two-mass example, below.
In general, algebraic solutions are impractical if the number of coupled modes is more than two.

With the increasing availability of digital computers, iterative solutions are now widely used. One such

procedure, using matrices, is suggested by NAVSHIPS 250-423-30. This work can be performed with desk
calculators, although it becomes very tedious if many modes are involved.
The above equations can be written, for the first mode:

Blaq¥p t AU v A ) = (8/“’12) (A/s)“l-l

'.2-1“14 + By QUp g b Ay = (g/mlz) (/\/5) u,

T T T LT W PP P (g/wlz) (A/s)“i-l

.......

Sael¥lep tRaQU b .+ AU = (5/“’12) (A/6)un‘1

where the general term, 8. = wiAi°i’ and Ai-i is the product of the influence coefficient, 8;_;(-83_3),
"and a constane. The latter is introduced for convenience in handling the very small influence coefficient
values. The subscripes, i and j, denote row and column, respectively. Their maximum values are
always equal (n). The subscript of w and the second subscripe of u indicate mode.

The “"matrix® conaists of the coefficients of u on the lefr sides of the equations. Assuming all u’s
to be unity (snmc\-times a more realistic mode shape can he used to advanctage), the rows of the matrix are
evaluated. If the true relative values of u had been known and used, the resules would he proportional to

- the respective u values, und the constant, Dy = (g/wlz)(A/S)-am! hence frequency—would be estab-
lished. Of course the results of the firsc trial are likely to show a pattern very different from the assumed
mode shape. The values are then "normalized® by dividing each by the largest value. This gives a new
set of u's, for which the matrix is reevaluated. The process is repeated until resules converge to show
the true mode shape. For satisfactory checking, it is desirable to calculate mode shapes more precisely
than would otherwise be justified. An example of a four-mass system, having five degrees of freedom, is
given below.
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Although the same equations are valid for higher modes, they must be transformed to obtain conver-
gence. A column of coefficients is eliminated by utilizing the "orthogonality” relationship, which states
that the summation of the products of the masses and the amplitudes for two different natural modes is
equal to zero. For the first two modes this equation, when multiplied by g, becomes

Viupqupp + Wouy u, + . o+ W u o qu =0
One second-mode amplitude (relative deﬂectxon) can be expressed in temms of all the others and the known
first-mode amplitudes.

W. u » v, u,_ Vu
u‘_2=(-‘-;-——1l)1_2+-(——wg—£-l—5u2_2+...+(_i§.“_l.snz
"W ale-l “Vala-1 ala-1

W, u,_, is the largest (absolute) value of wj“i-l' Unavoidable discrepancies between various col-

umns of the first-mode matrix will then not be magnified in the second-mode matrix.
The basic equations for the second mode are:

2
A Ut B Uyt R U LAy U (g, w, )(-’\,’8) U,

§ 2 ’
Baq¥y2 t Bp¥p - - T B Ut ot By Vg2 ™ (8’“’2 )(A"a) u2.2

.......

2 ,
CNRY PUPREIY TUPL PAPIE I S S SUP S JRIPIE SRR TP (g/mz )(A/B) u, 2

Substitution of the above value of u,_, in these equations yields a second-mode matrix in which the co-
efficients of u__, are zero, and the other coefficients each contain an additional term. The general ex-
pression for the elements of this matrix may be written:

where

W.u.
- ) i-1

b. . PN A S, .
i-j % u l) ot 194

Relative values of the second-mode amplitudes and the constant, D, [- (3.1’022) (A/B)] , can now

be obtained by the same procedure as for the first mode.
Two orthogonality equations relate the third-mode amplitudes to those of the first and second.

2wiui_lui-3 - zwi“i°2ui-3 = 0.

Ry eliminating u,.3. these can be solved for some other third—mode amplitude.

u

by = Wi(uggb,.2 = Ye1Y¥).2) Uyt V. (u, 18, 5= u,_ju o) u

=W lu, ju, 2 = v ju ) SR CRTIFETINT Rl
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This summation includes a term for each amplitude except & and b. Column b is chosen so tha the com-
mon denominator is again not less than the numerators. By substitution, a third-mode macrix is obtained,
in which two columns are zero. The general element is

& = Siyy * di-i .

where

P B L B L Y,

R N TR

Cip-

Similarly, a fourth-mode matrix can be obtained. Uyq nd uy o are eliminated from the three ortho

gonality equations, and the general term for the matrix is
si‘i - ei-i + fi'i'

where

o Vi (loyguay = gy gy 4 (u, juy - UygU3 Mg + (up gu, . = U g o ] ...
Ve [(y2uaey = U gy gl + (o oy y = wy U M+ (a6, - EREEL

i-j

A3 before, the largest absolute value provides the basis for selection of column c.

For still higher modes, algebraic expressions for the solution of the simultaneous equations increase
in complexity. The process of elimination and substitution can be carried out using only numerical co-
efficients, as illustrated in the fifth mode of the example. This does not, of course, shorten the process
of obtaining new matrices. Fortunately, evaluations of the matrices become easier as columns and, for
the trial calculations, rows are eliminated. For the nth mode of a system of n degrees of freedom, all
relative amplirudes can be obtained directly from the orthogonality equations.

Effects of rocational inertia. —Rotational inertia may be significant, especially if the arrangement is
unsymmetrical. One way of allowing for this is to divide the weight of the item in half, separating the
two halves to give a corresponding moment of inertia abeut the center of gravicy.

Shock forces.~The procedure followed here has been taken from NAVSHIPS 250-423-30 and NRL
Memo Rept. 1396. Some formulas were modified to eliminate unnecessary compumations.

To each mode being considered, an input acceleration is spplied. This acceleration, which depends
upoa: location, type of ship, and other factors, is assumed to be a function of "modal effective weighe.®
The lacter is defined by the formula,

. (Swl/zw,

In calculating the numeratoe, only deflections in the direction of the shock input are considered, but for
the denominator, all deflections compatible with the given mode are included.

The smaller of two values, A or Vw/g, butnot less than a specified minimum, defines the input ac-
celeration in g's. A and V are obained from specified formulas or curves, and w is the circular nacural
frequency of the mode in question.

The sum of the forces acting in the direction of the shock input is equal to-the above acceleration
times the modal weight. This quantity increases with increasing modal weight, although accelerations
tend to decresse. The individual loads are calculated from the expression,

P = Wu(IZWu/IWu2)(A or Va/p). -
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YWu, as in the formula for modal weight, includes only deflections in the direction of shock input,
but .1l directions are included in the individual values of Wu and in the denominator, SWul. It should be
noted that the calculations for mode shape and frequency indicate only relative deflections. All could be
changed proportionally without affecting modal weight or the calculated forces. The sum of all modal
weights, for loading in a given direction, is equal to the total of the weights considered free to move in
that direction.

Design stresses.~It is assumed that the higher modes of vibration excited by the shock motion con-
tinue for a sufficient interval of time that stresses will be additive to those of the first mode. As the num-
ber of modes being considered is increased, however, the chance of coincidence of all maximum stresses
is reduced. The assumptions to be made in combining stresses, as well as input motions and allowable
stresses or factors of safety, will be stated in specifications.

Lxample of two-mass system.—Two masses, weighing 26 k. and 14 k. (including allowances for struc-
ture), are to be supported by a pair of unsymmetrical bents, of HTS, as shown in figure 7. Vertical shock
inputs are to be taken from the following formulas:

_16(37.5 + )12 + W)

A = =
® 6 + W)? !

_ 4812 + 1))
6+ W

For each mode, the smaller of the two values, A or Vw/g, but not less than 6 is to be used. In the longi-
tudinal direction (parallel to the beams), 20 percent of the above values will be used, with 6 again as the
minimum. Athwartship forces are assumed to be resisted by other structure.

Preliminary design.—For a single mass weighing 40 k., the acceleration criteria give A; = 30.5 g's
and A; = 6.10 g’'s.

The horizontal girder will be considered first on the basis of pin joints at A and B. Under vertical
loading, the effective value of A,, applied simultaneously to both masses, will exceed 30.5 g's. For
A, - 40, the reactions (for both bents) are:

v.L w,L
RE - (Az) 1*~*CB + 2*~DB - (40) 26 X l% + l‘ x 36 - lws k.
L,p 130

Vilac * Vol ap

Rp = (A) = 597 k.

LAB
‘Check: Rg + RF = (Az)(w‘ + W) = 1600 k.
Bending momeants (for both bents) are:

MC - RELAC = 1003 x 24 = 24,100 in. k.

Mp = RgLpp = 397 x 36 = 21,500 in.-k.

Section modulus required to give yield suess at C is Z, = NC/ZFY = 24100/(2 x 45) = 268 in.3, for

each bent. 24WF110 gives Z = 274 in.3. :
If the legs are to be designed to give a factor of safety of 1.25 on column strength, the sectional area
of AE must be at least 1.25 R /2Fy = 1.25 x 1003/(2 x 45) = 13.9 in.2, for each bent. 18WF50 gives

A =147in2, Z = 89in.3, and r = 1.59 in. This section, used for both short and loag legs, gives:
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Member AE BF
L /'/ 3s in. 110 in.
L/t 22 69
F¢ /6089110-4) £ ksi | 35 ks
P 11003 k. 97 k.
P/2A O340 ki | 203 ks,
F.S. 1.31 1.72

Under the longitudinal loadings, if Pin joints are assumed at A and B, with fixed ends at E and F,
the full limit-design strength of the structure would be

z z
po-z(._’i_+._L F.
Lag  Lar

However, sufficient movement to develop the full strength of BF would involve considerable yielding of
AE. A safer assumption is that the short legs carry the endre load. The section modulus required to
meet the acceleration criterion is then

wL
ZO.Ax AE'6.IOX4OX ”-95in.3
2FY (2 x 45)

For ¢® 18WF 50, limit-design section modulus is sbout 14 percent greacter than the elastic value, and
1.14 x 89 = 101 > 95 in.3

It appears, then, that the scantlings shown on figure 7 will be adequate. The structure will now be -
analyzed as a two-mass system. S

Influence coefficients

BENDING DEFLECTIONS FROM VERTICAL LOADS

Member AC cD DB
Length, L - in, 24 70 36
3JEI (Both Bents)—k.-in.2 3El g = 3 x 29,600 x (2 x 331.5) = 5.89 x 108
T_' —[—-—-'-’ T e - -
(L/3ED = (k.-in.)"! 4.07 x 1078 11.88 x 108 6.11 x 10°8
Load1 | ™1A - 0 m) - = 1957 |, - 6.65
:one:;ta (8 Q) s le = 19.57 | ®p = 665 [my - 0
rom Unjt
Loads—in. | Load 2 A = 0 myc = 665 | my, = 26.0
- (,lt D) mZC = 665 mZD = 26.0 sz = 0

(Continued)



21 9110-7-d

BENDING DEFLECTIONS FROM VERTICAL LOADS (Continued)

Member "~ AC cD ' DB
"’%A - 0 mfc = 383 m%D - 44
mic - 383 mip - 4 mip - 0
%11 mamic = 0 mcop = 130 mipmp = O
£ Prod. = 383 T =557 > - 44
T [ 845108k | x ﬁ% - 15.6 x 106 66.2 x 10 2.7 x 1076
g g m, = 0 |ml - 4 |ml -6
éj g 5 m%c = 44 m%D ‘- 676 m%a - 0
"3 2 2 ma®2c = O mycmp = 173 mp®2 = O
g W z - 44 3 - 893 z - 676
'f; "’IE 149.2 in./106 k. 1.8 x 106 106.1 x 1076 41.3 x 108
" mipmp, = O mcmyc = 130 mpRyp = 173
N mcmyc = 130 mpRp =173 mpmp = 0
5., hmjpmpc = O Ym cmyp = 234 Ao pmap = 0
Hmicmap = O %mpmyc = 22 fmgmp = 0
b - 130 3 - 579 > - 173
84.7 in./10% k. 5.3 x 10 68.8 x 10 10.6 x 107
SHEAR DEFLECTIONS FROM VERTICAL LOADS (APPROXINATE)
Member AC CDh DB
Length, L — in. 24 70 36
GAy (Both Bents) - k. 11,400 x (2 x 11.45) = 2.61 x 103
L/GAy - in./k. 920 x 106 - | 268 x 106 | 137.9 x 10
Sheats Load 1: v, = 0.815 -0.185 -0.185
From Unit Loads  f, _43. v =~ 0277 0.277 -0.723
B 8., "25 0.664 0.034 0.034
lofluence Coefficients, | 74.9 in./106 k. | x = T 61.1 x 10 | 9.1 x 1076 4.7 x 1076
=3 G";' » 2. o007 0.077 0.523
(Shear Products) 99.8 in./106 k. 7.1 x 1076 206 x 106 | 72.1 x 10°¢
5., viv2 = 0.226 -0.051 0.134
25.6 in./106 k. 20.8 x 1076 ~13.7 x 106 | 18.5 x 1076
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AXIAL DEFLECTIONS FROM VERTICAL LOADS

From Unit Loads

L/EA ~ in. /.
Forces Load 1:

Member AE BF
Length, L - in. 35 110
'EA (Both Bents) ~ k. 29,600 < (2 x 14.7) - 870 x 10°
B T w0 T e D e

Pl = 0.815

0.185

26.0 in./106 k.

Load 2: P2 = 0.277 0.723
2 _ 0.664 T 0.034
5 Py = 3
1-1 L P P
i -/ . — . .
Influence Coefficients, 31.0i0.7108k. | x g2 = 26.7 x 10 43 x 10
L 2
8-% 71 82 p,” = 0.077 0.523
(Force Products)

69.2 in./106 k. 3.1 x 1076 66.1 x 1076
61_2 PP, ~0.226 0.134

9.1 x 107

16.9 x 1076

TWO-MASS SYSTEM; RESPONSE TO SHOCK INPUTS (VERTICAL)

Weights v, - 2.0k Q) ¥, - 140k D
Influence 106 8, | = 84.5 + ©) 1065, , = 149.2 + @® 1065, , = 84.7 + ©)
Coefficients 74.9 + 31.0 = 190 99.8 + 69.2 = 318 25.6 + 26.0 = 136
Ratios i s ® 22 1674 Q) 212 g.7158
. 811 811

®:@-351 B

@-GF - 1162 :

- 1959

@

__g 386
Y814

@

x 106 _ 781 x 104
x

» First Mode — Second Mode
% N9 (9) - @Y (s) + 1
...__:_Ll i I @) = 2.362 @
Frequency = V@D Q-2 @ o- Y@ < G4 - 40
Modesh-pes:‘ ‘x (é-x)-l.m ® x <€;§-1>--x.496 Q)

(€ ontinued)
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TWO-MASS SYSTEM; RESPONSE TO SHOCK INPUTS (VERTICAL) (Continued)

First Mode Second Mode

w v wu? P v wu? P =
¢ ¢ Yl @x(w) 4 . v @ x (Wu)

v, 26.0 || 1.000 | 26.00 | 26.00 725 1.000 | 26.00 | 26.00 237

v, 14.0 || 1.241 | 17.37 | 21.56 485 -1.;96 ~20.94 | 31.33 -191

< | © Q)
40.0 43.37 | 47.56 5.06 | 57.33

— 2 — 2 .

Modal Weights v, = -—@—: 39.55 v, -—@-- 0.45 Cl:.ed‘.
@ @ ¥ - 40.00

o _j—_- A 30.6 182

Input
Accel. Vo ' .
VvV, — 4.3; 324 2.7, 10
: 54.3; 3 9 3 (84
P ©-®_ 4 @ G-, G
‘. @ &

€alculation of stresses.—For the assumed structural arrangement, maximum values of the following
are significant:

1. Forces at each mass (for design of attachments).

2. Reactions (for column stresses in legs and shears in beams).

3. Bending moments at C and D.

Reactions and moments for unit loads have already been determined. (See preceding tables.)

P/(max.) = 725 + 237 = 962 k.

Py(max.) = 485 + 191 = 676 k.

R, - 0.815 P, 1 0.277 P,

Rl-.("""') O.BIS(72% v 237) + 0.277(483 - 191) = 863 k.

Rp = 0.185 P, + 0.723 P,

RF(max.) = 0.185(725 - 237) + 0.723(485 + 191) = 579 k.

M = 19.57 P, + 6.65 P,

M(max.) = 19.57(725 + 237) + 6.65(485 - 191) = 20,800 in.-k.
" Mp = 6.65 P, + 26.0 P,

Mp(max.) = 6.65(725 ~ 237) + 26.0(485 + 191) = 20,800 in.-k.

These reactions and moments are all somewhat less than the preliminary design values for vertical
loading. However, maximum shear stress in the web of AB is found to exceed the allowable limic.

R
_E _ 86 _ 378> 0.6F = 27 k.s.i.
2Ay,  (2'x 11.49)




9110-7d 24

The addition of suitable reinforcement to the web of AB will have an effect on stiffness. If shear de-
flection is neglected, calculated frequencies are increased. For the first mode, this is not importane since
the controlling criterion was A,, racher than V;. However, the second mode is accentuated, and calcu-
lated reactions and momencs are increased, as shown by the table below. The corresponding bending stress
in AB exceeds yield, but only by a very slight margin, _

If the beams were supported by equal legs having the same average length (72.5 in.) swesses would be
reduced (see figure 8). ' : ’

The table below shows, also, the possible effects of increasing the stiffness of the beams. If 15
square inches of deck plating is assumed to act in addition to the I section, Iop is increased by 47 per-
cent. Section modulus is also increased, but by only 11 percent. The result is an increase in second-mode
response and somewhat higher stresses in the legs. Calculated swresses for the beams are somew hat
lower, which would probably not have been the case if frequencies had not already been high enough that
the accelemtion criteria were dominaant,

FORCES AND MOMENTS ON BENTS (VERTICAL SHOCK LOADING)

Two-Mode Analyses
Except as noted, legs are unequal, I-sections only are
e Preliminary | considered, and shear deflection is neglected.
Quantities Design :
Shear Equal Plating
Included Legs Added
106 5l~l 190 115 143 R8.5
Influence
Coefficients 106 82_2 318 218 199 171
100k M, 136 111 115 83.6
Frequencies wy . 230 274 265 313
rad./sec. w, 430 634 618 77
Mode Shl”, 18t Mode 1.241 1.382 1.104 1.402
uy/uy 2nd Mode ~1.496 ~1.343 -1.682 -1.323
'l 39.55 39.00 39.91 38.90
Moda] Weighta 40
v 0.4 1.01 0.091 111
1st Mode +725 H6RY 1704 YOH A
Forces on B Sty SR
26 k. Mass | 2nd Mode *237 551 148 %16
k. Max. 1,040 962 1,240 912 1,300
. 1st Mode 485 *+513 455 516
Foftces on .
14 k. Mass | 20d Mode 7191 $99 ] 134 39
k.
Max. 560 676 912 589 955

(Continued)
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FORCES AND MOMENTS ON BENTS (VERTICAL SHOCK LOADING) (Cortinued)

Two-Mode Analyses
Except as noted, legs are unequal, I-sections only are
.. Preliminary considered, and shear deflection is neglected.
Quantties Design _
Shear Equal Plating
Included Legs Added
Max. Rp 1,003 865 1,043 832 1,081
R i ;
ens Rg 597 579 685 540 703
Max. Moments Mc 24,100 20,800 25,000 20,000 26,000
in.-k. My 21,500 20,800 24,600 19,400 25,300

Design as a rigid frame.~The foregoing calculations were based upon the assumpdon of pin joints at
A and B. This resulted in a structure which, under vertical loadings, was statically determinate. With
rigid joints, elustic analysis (by moment distribution) indicates the forces and moments shown by figure 9.
The loads are increased slightly over those for the corresponding pin-jointed strucrure, but bending moments
at C and D are reduced by the end momeants.

While stresses in the beam are lowered, those in the legs are increased to calculated values in excess
of yield strength. This does not mean that the structure would collapse. It implies some working of the
joints, but actual strength is unlikely to be less than for a true pin-ended coadition.

Under longitudinal loadings, rigid joints at A and B have the effect of doubling the limit-design load.
I'or collapse of the structure, plastic hinges would have to form at A, B, E, and F. Figure 10 shows mo-
ment diagrams for the elastic and plastic conditions.

Even with pin-joints, the legs are sufficiently strong to meet the longitudinal acceleration criterion.
And, since the specified A, for this particular weight is close to the minimum value of 6, scantlings may
not be materially reduced on the basis of the velocity criterion. As a matter of interest, however, dis-
cussion of this aspect of design is in order.

If the two masses are held together by saucture which is stiff, compared to the legs, they may safely
be treated as a single rigid body, as for the preliminary design. The energy cottespondmg to the specified
velocity, in the longitudinal directon, is

W(o.ZV,) - 40010. 85)% = 6.10 in.k.
28 2 x 38

The enetgy which can be absorbed elastically is calculated as follows. (See 9110-7-c.)

For AE, L/GEI = 35/(6 x 29,600 x 2 x 801) = 12.3 x 1078 (k.-in.)’!
For AB, L/6EI = 130/(6 x 29,600 x 2 x 3315) = 11.0 x 1078 (k.-in.)"!
For BF, L/6EI = 110/(6 x 29,600 x 2 x 801) = 38.7 x 108 (k.-in.)’!

From the rigid frume analysis, the load corresponding to yield stress ac E gives the following beading
moments (in in.-k., for both bents):

Mg = 8010, M, = -5280, Mg = 1510, Mg = =320

(The significance of the minus signs is that, for each member, the bending moment passes through 0.)
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Calculation of Qg:

For AE, 12.3 x 107 (80107 - 8010 x 5280 + 52802) = 6.12 in.-k.
Fer AB, 11.0 x 1078 (52802 - 5280 x 1510 + 15102) = 2.44 in. k.
For BF, 38.7 x 109 (15102 - 1510 x 320 x 3202) = 0.74 in.-k.

Qu, = 9.30 in.k.

With pin-joints at A and B aad negligible axial deformation, the horizontal load would be distributed
between the two peirs of legs in proportion to their stiffnesses. For a cantilever, K = 3E[/L3.

For AE, K, = 3 x 29,600 x 2 x 801/353 = 3320 k./in.
For BF, Ky = 3 x 29,600 x 2 x 801/110% = 107 k./ia.

Vith yield scress at E, the moment ac F would be

K L 107\ /110 .
M. « M _!2)(_22) - 8010 <..__..> (_._). 811 in.-k.
F E
(KA L.g 3320/\35
Then the energy is:

For AE, 12.3 x 1078 (8010)2 = 7.89 in.-k.

For BF, 38.7 x 10 (811)2 = 0.25 in.k.
Qg, = 814 in.k.

Perhaps the most realistic assumption that could be made for this particular structure would be that
M, = ~Mg and thate Mp and M. are negligible. Since a true fixed-end could not exist at E, en .ugh rota-
“tion to make M, = My seems justified. Then:

For AE, 12.3 x 108 (8010)? = 7.89 in..

For AB, 11.0 x 1078 (3010)2 « 7.06 in.k.
Qg, = 14.95 in.«.

Conclusion.-The structure shown by figure 7, with rigid joints at A and B, is suitable to support .he
specified loads. Under vertical shock, the assumption of pin-joints at A and B is reascrabie. For hori-
zoaw! loading, e limit-design condition, with pios at B and F, gives the most realiscic measure of response
in rerms of both swength and ecergy. While it mighe be possible to design a more uniformly stressed seruc-
ture, this would probably be quite difficult, since moment pattems vary with direction of lcading.

Example of multi-mass system.—The mode shapes, frequencies, and shock forces of a four-mass sys-
tem, having five degrees of freedom, are calculated below. The arrangement, shown ir. figure 11, was
chosen for simplicivy in illuserating the peocedure.

The following steps are numbered to correspoad to the bulated daca.

Basic data.~

1. Number identifying deflection of lumped mass. Items are treated as sepamte masses only if
the structure permits sigaificant relatve movement. The labor of calculation increases rapidly with the
aumber of degrees of freedom.
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2. Weights are rounded off to suit probable accuracy of data. In general, weights are not likely
to be known closer than within one or two percent.
3. The influence coefficient matrix may be expressed in whatever units are convenient. In the

cxample, only bending deflections are considered and A = (3EI x 1074)5. Values of A are rounded off
according to probable accuracy. This matrix is always symmetrical about its principal diagonal.

4. Columns of A's are totaled for checking purposes,

First mode. -

5. The first mode matrix is obtained by multiplying each column of A’s by the corresponding
weight. For best checking, exact products of the unavoidably approximate W’'s and A’s are used.

6. Addition of the columns of a’s should agree with multiplication of weights by the totals of
step 4.

7. Rows of a’s are totaled © give a firse approximarion of relative deflections. In effect,
forces are based on all amplitudes being equal.

8. The values obtained in step 7 are divided by the sum which has the largest absolute value.

9. Successive approximations of the relative deflections are made. Rows of a's are multiplied,
term by term, by the respective, normalized deflections just calculated. Their sums are then divided by
the sum ior the row selected to give the unit deflection. Hence it ;s convenient to calculate this row frst.
If later approximations show some other amplitude to be greater, the basis for normalization may be changed
at any time. However this is not essential. As the values converge, significant figures are added.

10. At this point it is advisable to verify the influence coefficients by computing the first-mode
forces, bending moments, und deflections, Force ia proportional to weight and amplitude.

Second :nude. -

11. Each weight is multiplied by the corresponding final value of step 9. The column for which
this product has the largest absolute value is designated (a).

12. Each product, from 11, is divided by the negative of 11(a). Hence 12(a) = -].

13. Column (a) of step S is multiplied, successively, by the values found in step 12. Column (a)
of 13 is, of course, numerically equal to columa (a) of 5, but note that the signs are reversed.

14. The columns of 13 are added and checked by multiplying Zai-. (from 6) by the values of 12.

15. The elements of 13 are added, algebraically, to the corresponding elements of 5. In the re-
sulting second-mode matrix, one column (for j = a)is reduced w zero.

16. The addition and checking are similar t step 6.

17. Rows are added, as in 7,

18. Results are nomalized, as in 8. However, wial values of u,.2 are of no significance since
their new coefficients are zero. To save computations, normalization is based on deflection at another
point, regardless of the value of u,.7.

19, Successive approximations of the relative amplitudes are made, as in step 9, uatil the results
Converge. u,_y is omitted undl the final step.

20. As a check, the final values of 19 are substituted in the matrix of S. The divisor for nomali-
zaton and the relative amplitudes should agree, approximately, with step 19. However, slight inaccurucies
in the mode shape will produce relatively large apparent discrepancies in the first-mode matrix. The final
results of step 19 are used as the values of U2 in the subsequent calculations.

Third mode.~
2]. For cach column, Wj(“.-z“;-x - “a-l“j-l) is calculated. Itis zero when j = a. The column

corresponding to the largest absolute value is designated (b).
22 through 30. These steps are similar to the corresponding ones for the second mode, 12 through
20. In the third-mode matrix (25) two columns, for j = a and j = b, are zero. Amplitudes U3 and uy_3
are omitted until the final trial of step 29.
Fourth mode.~ »
31. The expression to be evaluated, for each column, is

Y, [0y = uaguypup g+ Ga,quy sy - Ube1¥a-30ig + (up Uy = U U]

It is zero for both (a) and (b), and the largest absolute value provides the hasis for selecting (c).
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32 through 40. These steps follow the corresponding ones for the lower modes. Three columns
have now been eliminated from the macrix, and three rows are evaluated only to give the final values of
U, 4 Yp.4, and Uoq-
Fifth mode.~
41. The coefficients of u;_¢ are here detemined, numerically, by eliminating the terms involving
Uggr Yy s and uo.s: Since only two coefficients remain, the final mode shape is readily apparent.
Amplitudes are inversely proportional to the coefficients. .
42 through 47. To illustrate the procedure more generally, the data from step 41 are reated in the
same manner as for the lower modes.
' 48. Since only one column remains in the fifth-mode matrix, normalization of the values found in
47 defines the mode shape.
49  An alternative procedure for the final mode is to solve the equations of step 41 for all relative
values,
50. Values of u;_g are substituted in the first-mode matrix. The resules from step 49 give better
sgreement than steps 42 through 48.

Resporise to shock inputs.—For vertical shock motion, forces and the resulting reactions and bending
moments ar: calculated below, for all five modes. Effects are combined by adding the greatest value and
the square oot of the sum of the squares of all the others.

For horizontal shock motion, the numerator of the expression for modal weight involves only the valucs
for j = §, which are listed in parentheses. Weights calculated are: 1.361, 3.225, 0.455, 0.139, and 1.020,
giving the correct total of 6.200. If A and V are to be reduced to 20 percent of their values for vertical
shock, the five matios of P/Wu are: 2.3, 10.7, 9.2, 5.6, and 11.8. These are al] less than the correspond-
ing ratios for the vertical inputs. It is therefore unnecessary to calculate forces, reactions, and moments.

Accelentiniconverjence.—umr the first few iterations, increments of the calculated values of a rela-
tive displacement tend to decrease by a constant mtio. For example, successive values of uy.3 (Step 29)
are 0.6925, 0.6833, 0.6784, 0.67572 . .. Their differences are 0.0092, 0.0049, 0.00268 . . . ; and the ratios
of successive differences are 0.53, 0.55 . . .

If it is assumed that this ratio is a conswant, numerically less than 1, an extrapolation can be made for
the limiting value of the displacement. The result is a short cut in the iteration process which may be well
worth taking when determining mode shapes with a desk calculator. If three successive values of displace-
ment are u,, uy, and u,,

From the first three of the values listed above,

uy.y = 0.6833 + _0:6784 ~ 0.6833 _ g 4729
| - 0.6784 - 0.6833

0.6833 - 0.6925

The final value of uy.3 (0.6723 . . . ) differs by only 0.0005, less than a twelfth of its difference from
0.6784. Four more iterations were required to obtain a comparable value without the short cut.
The corresponding three values of ug_ 3, —0.0224, -0.0239, and ~0.0241, give

Uy, ~ =0.0239 4 _(=0.0241) - (0.0239) _ g 24 .
43 1 - (=0.0241) = (=0.0239)
(=0.0239) - (~0.0224)
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This result is somewhat misleading as the sign of the increment of ug.3 reverses on the very next iteration.
However, the discrepancy is automatically corrected in the subsequent operations. The tabulated daca,

step 29A, show that two extrapolations saved seven iterations.

Basic Data

CALCULATION OF MODE SHAPES

5 DEGREES OF FREEDOM

1 |j (Column No.) 1 2 3 4(Vert) | $(Horiz.)
2| -k 3.1 13.6 7.5 6.2
B i=1 24.0 -21.5 -15.7 8.3 ~13.0
i-j 2 | -21s 33.1 26.6 -14.3 22.2
3 (A . _3};31) 3 | -15.7 26.6 28.8 -16.8 26.2
LT 4 8.3 -14.3 -16.8 15.6 -25.8
s | -13.0 22.2 26.2 -25.8 4.3
4 (A -17.9 46.1 49.1 -33.0 $6.9
First Mode
i=1 74.400 ~292.400 ~117.750 $1.460 —80.600
2 | —66.6%0 450.160 199.500 —88.660 137.640
S laig = WAL 3 | 48.670 361.760 216.000 ~104.160 162.440
4 25.730 ~194.480 ~126.000 96.720 ~159.960
s | —40.300 301.920 196.500 ~159.960 293.260
Ta (Columns) -55.490 626.960 368.250 —204.600 352.780
Sa (Rows) ~364.890 631.990 $87.370 -357.990 $91.420
8 | Normalization -0.577 1 0.929 -0.566 0.936
853.0 -0.644 1 0.940 ~0.622 1.023
912.1 . -0.620 0.961 0.907 —0.607 1
. | 8837 —0.6175 0.9577 0.9046 -0.6063 1
& | 88207 —0.61706 0.95700 0.90412 -0.60621 1
9 Z | s81.69 | -0.6169 0.95690 0.90407 | —0.60623 1
881.654 | -0.616968 0.956873 0.904052 | -0.606225 1
881.641 | —0.616964 0.956867 0.904048 | —0.606224 1
Disou g 881.638 ~0.616963 0.956866 0.904047 | ~0.606224 1
" TLocation ‘A B C D E F (Vert.) | G(Horiz.)
Reladve Force | —1.913 | -10.274 | 13.013 6.780 -3.847 -3.759 6.200
10 | Moment 0 3.1 |-843.1 -787.8 -361.9 ~260.4 0
Relative Defl. | —0.6176| © 0.9578 0.9043 0 —0.6064 | 1
Difference 0.0006 - 0.0009 0.0003 - 0.0002 -
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Second Mode
1]j 1 2(a) 3 4 s ]
11 (W, -1.91259 13.01338 6.78035 | -3.758%9 6.2
12]Wu A=W u, ) 0.146971 -1 -0.521029 |  0.288825 | -0.476433
iml | —42.974 292.400 152.349 —84.452 139.309 ]
2 | 66.160 —450.160 -234.546 130.017 ~214.471
1306, = @ xa, | 3| s3.168 -361.760 | -188.487 104.485 ~172.354
4 | -28.583 194.480 101.330 -56.171 92.657
s | 44.373 -301.920 ~157.309 87.202 ~143.845
14 {Zb (Columns) 92.144 -626.960 ~326.663 181.081 ~298.704
i=1] 31.426 0 34.599 -32.992 $8.700
2 | -0.490 0 ~35.046 41.357 -76.831
15 e, = & + by 3 4.498 0 27.513 0.325 -9.914
4 | -2.8%3 0 -24.670 40.549 ~67.303
3 4.073 0 39.191 -72.758 149.415
16 | ¢ (Columns) 36.654 0 41.587 --23.519 $4.076
17 [Zc (Rows) 91.742 -71.010 22.422 -54.277 119.921
18 |Normalization 0.765 - 0.187 -0.452 1
192.75 0.540 - -0.008 ~0.480 1
186.22 0.490 - -0.042 -0.473 1
184.18 0.4792 - ~0.0490 -0.4715 1
183.7% 0.4769 - -0.0504 -0.4712 1
19 3 183.666 0.47640 - -0.05068 | -0.47111 1
2 | 183.6462| 0.476295 - -0.050742 | -0.471096 1
-g 183.6423 |  0.476273 - -0.050755 | ~0.471093 1
183.6415| 0.476268 - ~0.050758 | -0.471092 1
D;: i, 183.6413 | 0.476267 —0.516052| -0.050758 | -0.471092 1
2 I-i,iui,z 183.6419| 0.476265 ~0.5160%0 ~0.050760 | -0.471093 1
Difference] 0.0006| 0.000002 0.000002 0.000002 0.000001 -
Third Node
1]j 1 2a) 3 4 s(b) |
Uy g8y = (-0.516052)u. 0.318385 | -0.493793 | —0.466535 0.312843 ~0.516052
2 [~y o= (-0.956866)u, , | ~0.455724 0.493793 0.048569 0.450772 -0.956866
Wi(ug gui) = ugu;.y) -0.425751 0 -3.134745 4.734413 -9.132092
22 /- ) ) } -
22| @));/- @D, -0.046621 0 ~0.343267 | 0.518437 1
i=1 | -2.737 0 ~20.153 30.437 —58.709
2 3.582 0 26.374 -39.832 76.831
Bid. =@ xc, | 3 | 0462 0 3.403 ~5.140 9.914
4 3.138 0 23.103 -34.892 67.303
s | -6.966 0 ~51.289 77.462 -149.415

(Conunued)
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1] 1 2(a) 3 -“
24 | Xd (Columns) -2.521 0 -18.562 28.035
i1 28.689 0 14.446 ~2.555
2 3.092 o -8.672 1.525 0.
25 e =c 4d . 3 4.960 0 30.916 —-4.815 0
L 4 0.285 0 -1.567 5.657 0
S -2.893 0 -12.098 4.704 0
26 | Ye (Columns) 34.133 0 23.025 4.516 0
27 | e (Rows) 40.580 -4.055 31.061 4.375 -10.287
28 | Normalization 1 - 0.765 0.108 -
39.464 1 - 0.7118 ~0.0077 -
38.991 1 - 0.6925 -0.0224 -
38.750 1 - 0.6833 -0.0239 -
38.621 1 - 0.6784 ~0.0241 -
38.5507 1 - 0.67572 -0.02372 -
38.5111 1 - 0.67422 -0.02358 -
38.4890 1 - 0.67338 -0.02351 -
38.4767. 1 - 0.67291 -0.02347 -
2 38.4698 1 - 0.67265 ~0.02345 -
S | 38.4660 1 - 0.67250 ~0.02344 -
‘& | 38.46382 1 - 0.672421 | -0.023435 -
8 |38.46267 1 - 0.672377 -0.023432 -
38.46203 1 - 0.672352 | -0.023430 -
38.46166 1 - 0.672338 | -0.023429 -
38.46146 1 - 0.672330 | -0.023428 -
38.46134 1 - 0.672326 | -0.023428 -
38.46128 1 - 0.672324 | -0.023428 -
Dyiv 4 38.46125 1 ~0.072128| 0.672323 | —0.023428 | -0.289564
0 Xa_uy 38.4574 1 -0.07201 0.67249 ~0.02347 —~0.28935
Difference 0.0039 - 0.00012 0.00017 0.00004 0.00001
Fourth Mode
1] 1 2a)_ 3(c) 4 3(b)
(Vh.280-3 = Up2Vpe3)j.g 0.136693 | -0.212001 ~0.200299 0.134314 | -0.221558
(4, juy3 = pqu, 3y | —0.097609 0.105763 0.010403 0.096548 | -0.204946
31 (4 u,.3 = UppUp.p0ujs| —1.472918 0.106239 -0.990277 0.034508 0.426504
W. x Sum 1 —4.44489 0 -8.85130 1.64529 0
32 @;/‘@c -0.50217 0 -1 0.18588 0
im1|  -7.254 0 ~14.446 2.685 0
2 4.355 0 8.672 -1.612 0
330 f - x e 3 | -15.525 0 -30.916 5.747 0
= @ x e 4 0.787 0 1.567 —0.291 0
5 6.075 0 12.098 -2.249 0
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Fourth Mode (Coatinued)
1] 1 2Aa) 3(c) 4 S(b)
34 | 2f (Columas) ~11.562 0 ~23.025 4.280 0
i=1] 21.435 0 0 0.130 0
2 7.447 0 0 '~0.087 0
35| By = € + £ 3 | -10.565 0 0 0.932 0
4 1.072 0 0 5.366 0
b} 3.182 0 0 2.455 0
36 | g (Columns) 22.571 0 0 8.796 0
37 | £ (Rows) 21.565 7.360 -9.633 6.438 5.637
38 | Normalizacion 1 - - 0.299 -
21.474 1 - - 0.125 -
21.451 1 - - 0.081 -
21.446 1 - - 0.07025 -
21.444 1 - - 0.06757 -
39 o | 21,444 1 - - 0.06690 -~
8 | 21.4437 1 - -~ 0.06673 -
= | 21.4437 1 - - 0.066690 -
824437 | 1 - - 0.066680 | -
21.4437 1 - - 0.066677 -
Dgi iy 214437 | 1 0.347011 | -0.489788 | 0.066676 |  0.156022
@ o, ui4 21.4623 1 0.34531 ~0.40064 0.06748 0.15449
Difference 0.0186 - 0.00170 0.00085 0.00080 0.00153
Fifch Mode
1 1(d) 2(a) 3(c) 4 S(b)
2 [V ) -1.91259 | 13.01338 6.78035 -3.75859 6.2
b|Wu. 1.47643 | -7.01831 -0.38069 ~2.92077 6.2
c|Vu., 3.1 -0.98094 5.04242 ~0.14525 ~1.79530
d|Vu 3.1 471935 ~3.67341 0.41339 0.96734
e | From (a) —0.14417 0.98094 0.51110 =0.28332 0.48735
f | From (b) ~0.20636 0.98094 0.05321 0.40823 ~0.86657
8 | From (d) 0.64435 0.98094 ~0.76354 0.08593 0.20107
albdi@+ (e 2.95583 0 5.55352 —0.42857 -1.32795
i) + () 2.89364 0 5.09563 0.26298 ~2.66187
i) + (g) 3.74433 0 4.27888 -0.05932 ~1.59423
k | From (i) ~1.44358 0 ~2.54210 -0.13120 1.32793
1 | From (j) -3.11894 ] ~3.56419 0.04941 1.32795
m|(h) + (k) 1.51225 0 3.01142 ~0.55977 0 ]
a|(h) + (1) -0.16311 0 1.98933 -0.37916 0
o | From (m) —0.99899 0 -1.98933 0.36978 0
p | (n) + (o) -1.16210 0 0 -0.00938 0

(Continued)
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Fifth Mode (Continued)
1y 1(d) 2Aa) 3(c) 4 S(b)
42 j/—d -1 0 0 ~0.00807 0
i=1 | -21.435 0 0 -0.173 0
2 -7.447 0 0 -0.060 0
Blh = @xgy | 3 | 10565 0 0 0.085 0
4 ~1.072 0 0 -0.009 0
5 -3.182 0 0 -0.026 0
44 | Xh (Columns) -22.571 0 0 -0.183 0
1 0 0 0 ~0.043 0
2 0 0 0 -0.147 0
45 ii-j = xi‘i + hi-j 3 0 0 0 1.017 0
: 4 0 0 0 5.357 0
s 0 0 0 2.429 0
46 | Zi (Columns) 0 ) 0 8.613 0
47 | i (Rows) -0.043 -0.147 1.017 5.357 2.429
48| u,_g; Dy = 5.357 —-0.00803 -0.02744 0.18985 1 0.45343
“ From Equation (p) (a) (m) P (i)
u.
-5 ~0.00807 -0.02743 0.18993 1 0.45361
oo | 2% D, = 5.356 | —-0.00842 | -0.02691 0.19025 1 0.45378
Difference 0.001 0.00035 0.00052 0.00032 - 0.00017
Response to Vertical Shock Inputs
Formmulas and Criteria First Mode
275 @) = V46.1 x 10°/881.6 = 229
Frequency: w = L—D ™ 2 P
J j Yj-1 Yiuia | Vi j1
gA/8 = 386 x 3EI/104 = 46.1 x 108 1 3.1 | -0.6170 | -1.913 1.180 -40
- 2 | 13.6| 0.9569 | 13.014 12.453 271
: . 2 2
Modal Weighe: W = (EWu®)?/ZWu 3| 75| o9040 | 6780 | 6.129 141
_ - 4 6.2 | -0.6062 | -3.758 2.278 -78
Acceleration: A= 16 ‘37'5; w’;’i + 9 s | 6| 1 (6.2) 6.200 129
©+® S | 304 14.123 | 28.240
o (12 + W) 2
Velocity: V= 48 ¥, = (14.123)2/28.40 = 7.063 k.
6+ W 1
A, = 79.7 V,w,/g = 41.6
Load: P = Wu(+IWu*/3SWu?) x 1 191/8
(A or Vw/g, which- P, /W = 208

ever is less)

*Deflections in direction of shock load-
ing only.
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Response to Vertical Shock Inpus (Continued)

34

Second Mode Third Mode
@, = V46.1 x 105/183.6 = so1 wy = V46.1 x 105/38.46 « 1095
2 . 2
i U, wiui‘z v;“;-z Pi‘z uj_y wi“i" wj“i-l pi‘5
1 0.4763 1.477 0.703 -91 1 3.100 3.100 247
2 | -0.5161 -7.019 3.623 -432 -0.072} -0.981 0.071 -78
3 -0.0508 -0.381 0.019 23 0.6723 5.042 3.390 401
4 | -0.4711 -2.921 1.376 180 -0.0234 -0.145 0.003 -12
b 1 (6.2) 6.200 -381 -0.2896 | (~1.796) 0.520 ~143
b3 -8.844 11.921 7.016 7.084
P, - 6561k W, = 6.949 k.
Ay = 829 Viwy/g = 92 Ay = 804 Vyw/g = 199
P’.z/w,u,.z - 6‘-, P,_3/W'u"3 - 79.6 ]
Fourth Mode Fifth Mode
w, = V46.1 x 108/21.46 = 1466 wg = V46.1 x 106/5.36 = 2930
. 2 2
i Y Y84 Vi P4 uj.s Yy Viuils Pis
1 1 3.100 3.100 249 -0.0081 -0.025 6.000 -2
2 0.3470 4.719 1.637 379 ~0.0274 -0.373 | 0.010 -28
3 | -0.4898 ~3.674 1.800 -295 0.1899 1.424 0.270 109
4 0.0667 0.414 0.028 33 1 6.200 6.200 472
S 0.1360 (0.967) 0.151 78 0.4536 (2.812) 1.276 214
pX 4.559 6.716 7.226 7.7%6
¥, = 3.005 k. i, = 6.732 k.
Ag= 184 Vi /g« 302 Ag = 818  Viug/g = 536
pi"/',“i.‘ - 80.4 Pi_s/'jui_’ = 76.2
Effects of Loads; Vertical Shock
Load Bending Noments Reactions
Pts B C D E F B E
» 1 33.00 21.71 9.88 0 0 1.1765 | * ~0.1765
3 2 0 -42.10 -19.17 0 0 0.6578 0.3422
- 3 0 ~19.17 ~39.23 0 0 0.2995 0.7005
‘3 4 0 9.24 18.91 27.00 0 - -0.1444 1.1444
> b} 0 -14.37 -29.42 —42.00 —42.00 ~0.2246 0.2246

{(Continued)
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Hecos of Loads; Verti al Shock (Conunued)
Lo;d Bending Moments Reactions
Mode
! Pts B C D E F B E
1 -1,320 -870 -400 0 0 ~47 7
2 (4] -11,410 -5,200 0 0 178 93
1 3 0 -2,700 -5,530 0 0 42 99
4 0 -720 -1,470 -2,110 0 11 -89
S 0 -1,850 -3,800 -5,420 -5,420 -29 29
b3 ¥1,320 317,550 716,400 37,530 35,420 +155 +139
1 -3,000 ~-1,980 -900 0 0 -107 16
2 0 18,190 -8,280 0 0 284 148
2 3 0 —4 40 ~900 0 0 7 16
4 0 1,660 3,400 4,860 0 . ~26 206
bJ 0 5,470 11,210 16,000 16,000 86 -86
| % | %3000 713,480 4,530 +20,860 16,000 1244 $300
1 8,150 5,360 2,440 0 0 291 —44
2 0 3,280 1,500 0 0 ~S1 -27
3 3 0 -7,690 -15,730 0 0 120 281
4 0 -110 ~230 =320 0 2 -14
5 0 2,050 4,210 6,010 6,010 32 ~32
z 8,150 2,890 ¥7,810 +5,690 36,010 +394 +164
1 8,220 5,410 2,460 0 0 293 ~44
2 0 -15,960 -7,270 0 0 249 130
4 3 0 5,660 11,570 0 0 -88 =207
4 0 300 620 890 0 -3 38
5 0 ~1,120 -2,290 -3,280 -3,280 -18 18
i Z | 18,220 5,710 +5,090 72,390 3,280 +431 365
1 =70 -40 =20 0 0 -2 0
2 1] 1,180 540 0 0 -18 -10
S 3 0 -2,090 ~4,280 0 0 33 76
4 0 4,360 8,930 12,740 0 -68 540
5 0 -3,080 -6,300 -8,990 -8,990 ~48 48
z 370 +330 1,130 *3,750 +8,990 7103 54
Summary of Responses
Mode 1 2 3 4 b] Max. v !Sq. Total
1 40 91 247 249 2 249 266 515
2 271 432 78 379 28 432 473 905
Forces 3 141 23 401 295 109 401 343 746
4 78 180 12 33 472 472 199 671
5 129 381 143 78 214 381 298 679

(Continued)
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Summary of Responses (Continued)
s

Mode 1 2 3 4 b] Max. | VIsq. Total

B 1,320 | 3,000 | 8,150 | 8 220 70 8,220 | 8,780 | 17.000

C | 17,550 | 13,480 | 2.890 | s.710 330 | 17,5% | 15.280 | 32.830

Moments D | 16400 | 4,530 | 7,810 | 5090 | 1,130 | 16.400 | 12,130 | 28 %30
E 7,530 | 20,860 | 5,690 | 2,390 | 3,750 | 20.860 | 13.250 | 34.110

F 5,420 16,000 6,010 3,280 8,990 16,000 12,530 28,530

. B 155 244 394 431 103 31 | 49 930
Reactiona E 139 300 164 65 654 654 375 | 1,029

Third Mode; Accelerated Convergence

1 j 1 2 3 4 s

Extrapolation 1 - 0.6728 ~0.0241 -

38.4698 1 - 0.672640 | ~0.02354} -

Divisor | 38.4661 1 - 0.672506 -0.023454 -

38.4639 1 - 0.672426 -0.023437 -

29A | Extrapolation 1 -~ 0.672307 | -0.023433 -

38.4610 1 - 0.672314 ~0.023428 -

Divi 38.4611 1 - 0.672317 -0.023428 -

1VISOf | 38 46115 | 1 - 0.672319 | -0.023428 -
38.46118 1 -0.072127 | 0.672320 -0.023428 | -0.289%63

9110-7-e. Shock Design Spectra

Significance of spectra.~Shock requirements can be described by a spectrum, where limiting design
values are defined as functions of natural frequency. The criteria used in the foregoing articles imply de-
sign spectra made up of straight lines, as in figure 12.

Any paint on figure 12 represents a set of relaced properties of a single-degrec-of-freedom system:

Nawral frequency, n. .

Energy-weight ratio, Q/W (=V2/2g. Ordinates can also be read in terms of velocity, directly.)
Load-weight ratio, P/W (= acceleration in g's, A)

Deflection, d (movement of center of gravity in direction of loading)

If any two of the above are known, the other two can be determined, either graphically or by the formu-
las already sctated in 9110-7-c.

The required value of Q/W, based on a step velocity change, is represented by a horizoneal line
across the spectrum. If the structure is stff enough, however, the diagonal corresponding to the limiting
acceleration, P/VW, shows that a lesser volume of material will suffice.

Under a typical, actual shock excitation, strains may be amplified if the frequency of the equipment
on its foundation is close to resonance with a natural frequency of the hull or of the bulkhead or deck ro
which the foundation is attached. Hence there are peaks in the spectrum act these frequencies, Since the
shock excitation cannot be accurately defined before the ship is built, and, in general, foundation frequen- |
cies and responses (particularly those beyond the elastic limit) can only be approximated, design must
usually be based on the cruder load and energy criteria. Nevertheless, a study of spectra is valuable for
a better understanding of shock phenomena, and, in certain cases, it may prove feasible to specify shock
inputs more precisely. Figures 13 and 14 show spectra derived from motion and pressure, as explained in
9110-7-f,

Effects of design changes.~If a point is plotted to represent an assumed structure, constituting the
spring of a single-degree-of-freedom system, its position relative o the shock design spectrum can be
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altered by various design changes.. Figure 12 illustrates this for data calculated in9110-7-c. More spe-
cifically, figure 15 shows the effects of varying the following:

1. Allowable stress. If the use of a higher strength material or a reduced slenderness ratio per-
mits increased stresses throughout the structure, the point representing the design moves vertically up-
ward. P/W and d are proportional to stress, and Q/W to stress squared. There is no change in fre-
quency. (It should be remembered that both P and Q correspond to a stress within the elastic limit, and
represent the structure rather than the design criteria.)

2. Area of member. An increase in area, without change iz radius of gyration, moves the point
diagonally, upward and to the right. P/W and Q/W increase in proportion to the area; frequency changes
with its square root, while deflection remains constant.

3. Depth of member in bending. Figure 15(a) shows the change which would result from doubling
the depth of the cross section, retaining the same area and shape otherwise. The point moves horizontlly
to the right. Q/W is unchanged; P/W and frequency increase; deflection, for the given stress level, is
reduced.

4. Radius of gyration of member in bending. If an I section is substituted for a rectangular one
of the same depth and area, the effect is about che same as that of doubling the area. Stiffness, streagth,
and energy capacity, all vary with r2. Permissible deflection is fixed by the value of c.

5. Length of member. If the length of a member is doubled, its energy capacity is also doubled,
given the same cross section and similar pattems of stress and strain. For an axially loaded member,

P/W is unaffected, provided there is no instability problem. For a beam whose length is doubled, however,
loading must be reduced by !4 while deflection is increased by a factor of 4.

The above relatioaships will suggest means of designing to suit a given shock spectrum while giving
due consideration to desired stuctural properties. For instance, if members are stressed in bending, they
will be less efficient thaa axially loaded members, with respect to both strength and energy. They may,
however, be able to deflect far enough to withstand the shock, while transmitting a greatly reduced accel-
eration to the equipment. For a given pattern of stresses, weight is proportional to Q, and is therefore
minimized by meeting the spectrum at the lowest possible point. Short, stiff members are likely o be
lightest, but sometimes advantage can be taken of the flexibility of slender beams. ¢

9110-7-f. Numerical Integradion for Calculation of Forces and Deformations Resulting
from Shock Loadings.

The following method of numerical integration can be used to calculate the effects of shocllt loadings,
defined as either motions or external pressures. This method can be applied to input and response curves
of any shape. Morcover, it does not require knowledge of advanced mathematics or reliance upon pre-
determined charts.  Although cquutions and charts can be extremely useful for typical conditions, culcula-
tions such us thone described below give the designer u "leel™ for what huppens under shock londings
which he doex not get from consideration of only static equivalents.

The time history of the shock input and resulting deformations is divided into a number of discrete
time intervals. These intervals must be small, but in many design problems the aumber which must be
considered is not great.

Each mass in the system is acted upon by forces, which may include exteroal pressure, spring forces,
and damping. The net force accelerates the mass.

Spring forces are approximated on the basis of the relative positions which the masses would have at
the middle of the time interval if theirvelocities did not change. The displacement change caused by ac-
celeration is small compared to that caused by velocity, and, for constant acceleration, oaly one-fourth of

_the increment is effective at the middle of the time interval. Hence, this approximation causes no signifi-
cant crror if the time interval is suitably small.

Damping forces are bused on velocities at the beginning of the time interval, tgether with the accel-
erations resulting from external forces, spring forces, and the damping forces themselves. The variations
in damping forces resulting from the changing velocities can sometimes be taken into account by merely
modifying the fuctors which would otherwise be applied to obtain the accelerations.
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The method described here avoids the trial-and-error procedures which are sometimes used to allow
for variatioas in the accelemtions over the time interval. The effects of these variations become less im-
portant as the interval is decrensed, and a high degree of accuracy can be obtained, theoretically, by using
a very short interval, Figure 16 indicates how computational errors may be affected by choice of the time
interval. For most engineering applications, inputs, spring and damping constants, and response criteria
are not known with sufficient precision to justify elaborate calculations. Simplicity has been the primary
objective in devising the method of analysis. '

If a mass is acted upon by a force, it is accelerated by an amount, & « P/m = (P/W)g. If the force
is not sensibly changed during a small time interval, h, displacement of the mass changes by (v, 1 ah/Mh.
(See figure 17.) During the first half of the next time interval, displacement chunges by (vo + ah)(h/2),
if further acceleration is neglected. Displacement at the middle of the first time interval, Ug, includes
the effect of velocity during the first half of that interval (voh/2), but does not include the effect of ac-
celeradon. Therefore, displacement at the middle of the second interval is, approximately, u = ug + vh,
where the new velocity, v = ¥o + ah. The displacement increments, vh, are obtained by adding succes-
sive values of ah?. Acceleration may vary considerably duting the interval without causing significant
esrors, provided the approximate mean value is used and the interval is small compared to the natural
periods of the system.

Spting forces are proportional to relative displacements undl the elastic limit is exceeded. For purely
plastic action, force is constant as loag as deformation is increasing.

For viscous damping, force is proportional to relative velocity. Consider the mass of figure 18, ac-
tached to a fixed base and acted upon by force P. If velocity were constant the damping acceleration,
ac, would be ~cv/m. If acceleration were constant, damping force would change linearly. The average
value of ac would then be ~c(v + wh/2)/m. Because of the damping, the acceleration caused by P s
reduced to approximately P/m(1 - ch/2m). Hence, the accelerations of the mass, including that from
damping based on initial velocity, are multiplied by the factor, (1 ~ ch/2m).

In general, short time intervals and simple calculations are prefemble to longer incervals and the more
elaborate formulas which allow for variables of secondary importance.

EXAMPLES

Elastic-plastic response of a simple system subject to a step-velocity change.—An item of equip-
ment weighing 2.5 k. is supported by HTS structure having stiffness, K = 555 k./in. Seess under load
equal to weight is 1.5 k.s.i. At yield stress, the load is then

Pg = (45/1.5) x 2.5 = 7S k.,
aad deflecdon is
(“‘ - U)B « 75/555 = 0.13% in.

As deflection increases beyonﬂ this point, the acceleration of the equipment is assumed to he constant.
Vibration frequency (within the elastic range) is

a=313VK/W = 313V 555/2.5 = 46.6 c.p.s.
A time 'internl of 2 milliseconds gives
nh = 46.6 x 0.002 = 0.0932,

which is small enough for accumcy.
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In the table below, columns 1 and 2 define the given shock motion. Column 5 gives values of ah? for
the mass, which is acted upon only by the spring force. Up to the point of yielding,

ah? = (ug - u)(Kg/W)h? = (up — u)(555 x 386/2.5)(0.0002)2 = (ug - u) x 0.343.

At yield,
0.135 x 0.343 = 0.046 in.

If damping were present an appropriate arrangement of data would be: ¢, (up — u), axh2, ach2, vh,
vgh (a constant in this example), and (vgh - vh).

The subscript, o, after a column number indicates the preceding value in the column. Thus the third
value in column 3 (.088) is obtained by adding to the second value (.021), the second value from column 6
(.067).

The table is continued until the maximum deflection has been reached. When deflection begins to de-
crease, acceleration would be reduced, but this phase of the response is of no special interest.

SIMPLE SYSTEM; STEP VELOCITY CHANGE

. Displacements — in. Displacement Changes — in.
‘(r,:;::;); Base, up Equipment, u Rel., ug — u || Increment, ah? Total vh
meec. | @ ® ® ® ®
© | -0, | ~@-0-@x0un [-©,+ O
»—_ml .060 0 .060 .021 .021
3 .180 .021 139 046 .067
5 .300 .088 212 .046 113
7 .420 .201 .219 .046 .159
Totals 0.960 0.310 0.650 0.159 0.360
9 .540 .360 0.180

Checking.~Much of the numerical work can be checked by tomaling the columns. The combined sums
of 3 and 4 must equal the sum of 2. (0.310 + 0.650 = 0.960). Also, the sum of column 5 must agree with
the last value in 6, and the sum of column 6 gives the next value for column 3 (0.360), If the response were
elastic only, the column 5 total would also check the column 4 total times 0.343.

Extrapolation for peak values.—Figure 19 shows how the calculated velocities compare with theoreti-
cal values. The curve of relative velocity (vg — v) is a straight line, passing through zero at about 6.3
msec., at which time relative displacement is maximum. While the relative displacement computed for 7
msec. is sufficiently accurate for most design purposes, a simple extrapolation can be made to obtain the

peak value. If u, is the largest calculated value and v;h and v,h represent the changes just before
and after:

2
Ca g iR R e, (0.007 - 0.039) | g 292 in.
max ° 8(vlh - vzh) 8(0.007 + 0.039)
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Simple system with other motion inputs.—A step velocity change can bé approached, but never fully
realized since it implies infinite acceleration. If the input velocity is a sine curve from 0 to the maximum
and then constant, corresponding design spectra can be established by assuming various frequencies.
Figure 13 shows such a spectrum, plotted nondimensionally, for elastic response.

If the velocity corresponding to yielding of the structure isless thun that indicated by a spectral curve
(for elastic response), plastc deflection, d}, Q - Ql_:)/l’"- H I’U and l’|_: (figure 3) are nearly equal,

the ratio of plastic to elastic deflection is approximately

% . 1[(.\/_)2 - 1] - .l.(_&- 1),

dg 2 {\Vg 2\Qg
where V and Q are the elastic-design velocity and energy, respectively, and Vg and Qg are the values
at yield.

The calculations for response of a simple, undamped system subject to any given motion are similar
to those for the step velocity change. Column 2 is modified to suit the given input data.

Two masses, one of which is subjected © an external pressure pulse.—Figure 14 shows such a sys-
tem. The base, WB, is acted upon by the pressure, which decreases uniformly from 2P, t0 0 in time T,
and by the spring force. The attached weight, W, is accelerated by the spring force only.

If T = 0.0007 sec., VW/Wp = 1.8, and the rigid-base frequency of W is 500 c.p.s., calculations for

elastic response can be made as follows.
For a time interval of h = 0.0001] sec., values of ah? resulting from the spring force are:

For W, (Kg/Wh(up - u) = (2n x 500)%(0.0001)3(ug - u) = 0.0987(ug . - ).
For Wg, (Kg/Wgh¥(u - up) = -1.8 x 0.0987(up - u) = ~0.1777(ug - w).

These coefficients of (ug ~ u) are small enough t ensure accuracy with the assumed value of h.
During the first time interval, the acceleration of Wg from the extemal pressure is

(13/14)(2P ./ W )h? = 7.17(P /W) x 1076,

Succeeding values are reduced proportionately, as listed in column 5.

Two-Mass Syscem; Triangular Pressure Pulse

. . 6
Displacement Changes - in. x (P,/10 V)

Displacements
Time, ¢ in. x (P"/IOGWB) Base Equipment
(M=an) _ ; -
msec ug u Ug -~ u P&hz/'a (UB-u)(E\#:_) vgh (“B'“)(Kwh'«‘) vh

@ @- ®- | ®- ]| O ®- Q- ® - ® -
@+ @ | @.+®, | @-O @117 | @+ O+® || @098D | D, + @

0.1 0 0 0 7.17 0 7.17 0 0
0.3 7.7 0 7.17 6.07 -1.27 11.97 0.71 .71
0.5 19.14 .0.71 18.43 4.96 -3.28 13.65 1.82 2.53 |

(Continued)
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Two-Miss System; Triangular Pressure Pulsc (Continued) -~

Displacements Displacement Changes - in. x (P°/106WB)
Time, ¢ in. x (Po/lo(’WB) Base Equipment

(Mcan) 2 Keh2 Keh2

msec up u ug-u || Pgh /Va (uB-u)(-#%—) Vah (ua-u)(-%—) vh
o | - | 0-|®-| 06| © | ©- - | @-

@D,+ D | O+ ®, | -0 @111 | @,+0+0® @ | D, +®

0.7 32.79 3.24 29.55 3.86 -5.25 12.26 2.92 5.45
0.9 45.05 8.69 36.36 2.76 ~6.46 8.56 3.59 9.04
1.1 53.61 17.73 35.88 1.65 -6.38 3.83 3.54 12.38
1.3 57.44 30.31 27.13 0.55 -4.82 ~-0.44 2.68 15.26

Totals 215.20 60.68 154.52 27.02 -27.46 57.00 15.26 45.57
1.5 57.00 45.57 11.43 -

Check: 215.20 — 60.68 = 154.52; 154.52 x (=.1777) = 27.46; 154.20 x (.0987) = 15.25 = 15.26.

The calculations indicate that maximum relative elastic dis.phcement is about 37(P°/106WB). The
corresponding design velocity can be obtained by multiplying this value by , or 2m.

Figure 14 shows spectra, derived by a similar procedure, for various ratios of W/Wy, plotted non-
dimensionally. Since the free-base velocity is .Png/'B, the relative value for the above example is

37(P,/10%W ) (2n x 500)
P,(0.0007)(386)/Wp

= 0.43.

This is confirmed by reference t the curves.

The same procedure can be extended to include other forces and masses. However, if many masses
are involved, particularly if there are large differences in their rigid-base frequencies, a high-speed com-
puter becomes virtually a necessity, unless the system can be reduced to simpler equivalents,
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Figure 4. Scess and energy diagrams for various cross-sections in bending.
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Figure 8. Bending moments in horizontal girders of two-mass system under vertical shock loading with pin
joints at A and B. Shear deflections are neglected and I-sectioas only are considered.
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in figure 7.




49 9110-7

DIMENSIONS IN INCHES

RIGID

33 64 67

187

UNIFORM BEAMS
(2-27WF177: I =2 x 6730 = 13,460 in.4)

Figure 11. Arrangement of four-mass system haviag five degree's of freedom. The only deflections coa-
sidered are those due to bending of the horizontal beams.
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Figure 14. Spectra for triangular external pressure pulse. Free-base veloci

P,T is the area under the pressuretime curve. If nT is small,
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Figure 16. Relmtive displacements for a simple, undamped, elaacic sysem with its base subjected to u step
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Figure 17. Displacement of mss,Aiiw:n an accelemtion, a, for a time incecval, h.

LA

SOOMNNNNNY

Figure 18. Mass whose motion is influenced by viscous dsmping.
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