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320-2-b. Scope

This design data sheet outlines a procedure for the calculation
of shipboard electrical system voltage harmonics in a balanced
system caused by current harmonics generated by user equipments.

This design data sheet also provides methods for the calculation
of noncharacteristic current harmonics, current harmonic reduction
by multiphase transformers, and voltage unbalances due to unbalanced
loads.



320-2-c.

Symbols and Abbreviations

S ols

nak’Inbk’

Inck

Inrk’Inik

Terms/ Parameters

Unit vector forzsymmetrical components.
a = 1/120°, a“ = 1/240°

Fourier coefficients at the nth harmonic.

Correlation constant.

Cl= 0.9 for synchronous generator with
non salient poles and synchronous
generator with salient poles and
damper windings.

C,= 0.7 for synchronous generator with

salient poles and no damper windings.

Dc voltage of user equipment with load.

Dc voltage of user equipment with no-load.

Generator positive and negative sequence
voltages.

Fundamental frequency.

Maximum single phase line-to-line short
circuit current.

Nth current harmonic.
Unbalanced Phase load current.

Currents at the nth harmonic in the
primary phase A, phase B, and phase C

windings of a phase-shifting transformer

number k.

Currents at the nth harmonic in the
secondary phase A, phase B, and phase C
windings of a phase-shifting transformer
number k.

Real and imaginary components of primary

winding currents I ; Ian, or Il&

Units

Volt
Volt

Volit

Ampere

Ampere



TSYAn’ISYBn’ - Phase A, phase B, and phase C secondary wye Ampere
winding currents at the nth harmonic of a

ISYCn secondary delta wye transformer.
T . I , - Phase A, phase B, and phase C secondary delta Ampere
SDAn’ "SDBn . . .
_ winding currents at nth harmonic of a secondary
% ISDCn delta wye transformer.
k - Postive integers indicating number of phase -

shifting transformers.

kva - Complex power rating of equipment. kVA
L - Inductance of a circuit element. Henry
lc - Cable length. Feet
n - Harmonic orders. --

Ny o N3k - Number of turns for secondary windings of a phase --

shifting transformer number k.

Pc - Number of identical cables in parallel per phase. --

pf - Power factor. -

pu - Per unit. -

R - Total resistance of an unbalanced phase load. Ohm

R - Cable resistance. Q/l03ft
Rg ~ Generator resistance. Pu

R2 - Line-to-neutral negative sequence resistance Ohm

of a network.

Rt -~ Transformer resistance. Ohm



Commutation angle for a rectifier load.
Line-to-line voltages.

Rated voltage of equipment or system.
Common voltage base.

Average magnitudes of line-to-line voltages.

Zero, positive, and negative sequence voltages.

2nd through nth harmonic voltages.

Highest magnitude of line-to-line voltage.
Lowest magnitude of line-to-line voltages.
Nominal value of fundamental voltage.
Tectail voltage harmonic distortion.

Voltage unbalance.

Total reactance of a single-phase load.

Cable reactance at the fundamental
frequency.

Generator direct axis subtransient reactance.

Generator negative sequence reactance.

Line-to-neutral negative reactance of a network.

It is the sum of a generator negative sequence
reactance, a transformer, and cable reactance.

Transformer inductive reactance.

Total impedance of a single-phase unbalanced
load.

Impedance of circuit elements or system at rated

voltage VA'

Degree
Volt
Volt
Volt
Volt
Volt
Volt
Volt
Volt
Volt
Volt
Volt
Ohm

Q/lOBft

Ohm
Ohm

Ohm

Ohm

Ohm

Ohm



Impedance of circuit elements or system
at common voltage base VB'

Line-to-neutral negative sequence impedance
of a network.

Generator zero, positive, and negative
sequence impedances.

Zero, positive, and negative sequence

components of a 3-phase unbalanced impedance.

Generator equivalent phase-to-neutral
impedance at the nth harmonic.

Cable equivalent phase-to-neutral impedance
at the nth harmonic.

Transformer equivalent phase-to-neutral
impedance at the nth harmonic.

Line voltage regulator equivalent phase-to-
neutral impedance at the nth harmonic.

Total impedance of a system circuit at the
nth harmonic.

Positive and negative firing angle for
rectifier loads.

Difference from the ideal value of 180°
between centers of the positive and
negative current waveforms.

Variation from a normal 120° of positive
and negative current pulse widths.

Angle between the primary and secondary
windings of a phase-shifting transformer
number k.

Symbol for multiplication.

Ohm

Ohm

Ohm

Ohm

Ohm

Ohm

Ohm

Ohm

Ohm

Ohm

Degres

Degree

Degr

o
1]



320-2-d. General.

Nonlinear loads are the major source of voltage and current
waveform distortions in a ship electrical distribution system.

The distorted current and voltage consist of the fundamental
frequency and harmonics of the fundamental.

Current harmonics in the electrical distribution system may
be generated by power sources such as generators, static frequency
changers or by user equipment such as power converters. In this
design data sheet, only nonlinear user equipment is analyzed as
a source of current harmonics. The current harmonics flow through
the system components and generate voltage harmonics throughout
the system. These current harmonics could be in any order. For
example, balanced 6-pulse and 12-pulse converter loads would cause
characteristic current harmonics in the orders of 6n + 1 and
12n + 1 respectively. If the system is unbalanced due to
unbalanced load, noncharacteristic current harmonics are produced
and may be in even or triplen(multiple of three) orders.

Multiphase transformers help to cancel current harmonics by
pr.ase shifting the currents in the secondary windings. Certain
current harmonics are greatly reduced in the primary windings.
Balanced 3-phase, 3-wire transformer primary windings would have
ne triplen or even current harmonics. The balanced 3-phase, 4-wire
transformer secondary windings may have all triplen but not even
current harmonics.

When a 400Hz MG or static frequency changer is used to convert
the 60Hz to 400Hz, current harmonics must be calculated separately
for each system(60Hz and 400Hz) .

320-2~e. Voltage Harmonic Calculations.

The procedures outlined below are a simplified version to
calculate voltage harmonics at any point in a balanced system due
to current harmeonics generated by an user equipment. This simplified
version does not take into consideration the distribution of some
current harmonics flowing into other user equipment (parallel with
the generator which also acts as a load as far as the current
harmonics are concerned). For more accurate calculation including
all user equipments, the Harmonic II computer program should be
used. It is necessary to know the orders and magnitudes of these
currents prior to performing the analysis. Current harmonics may be
calculated or experimentally determined. Section 320-2-f will
outline procedures and methods to calculate these currents. The
assumptions and approximations have been made as follows:
o Impedances of buses and circuit breakers are negligible.
o Skin effect and distributed capacitance of cables are negligible.
o The effect of induction motors on the voltage harmonic is not
included.
¢ Generator resistance is neglected if it is less than 10% of its
reactance value.



0 Generator voltage waveform is basically sinusoidal.
o Generator negative sequence reactance shall be used for the

calculation of its impedance at the nth harmonic. The negative
sequence reactance is related to the subtransient reactance as
follows:

- For synchronous generator with non-salient poles or a
synchronous generator with salient poles and damper windings,

the negative sequence regctance is equal to the subtransient
reactance, e.g. X2 = Xd .

- For synchronous gegerator with salient poles and no damper
windings, the negative sequence reactance is approximately, 1.7
times that of the subtransient reactance, e.qg. ng = l."lXd

o For solid state frequency changers, the negative sequence
impedance would most likely not be a linear function of the
frequencies because output filters in the frequency changers
would have poles and zeros. The solid state frequency changer
impedance curves at various harmonics (Z_ vs frequency) should

be obtained from manufacturers. o

Procedurs for Calculation of Voltage Harmonic.

Consider a typical power distribution system as shown in Figure 1
on page 36. The 3n current harmonics are assumed to be negligible and
are to be ignored. To calculate the voltage harmonics at any point in
the system, the following steps should be applied.

Step 1.

Determine the equivalent phase-to-neutral impedance of each
compeonent in the system at the nth harmonic from the following
formulas: 5

_ (Va) |
Generator: 2 0= (R + j(n)(Cl)(X2 )}
g g (1000) (kva)
- (v,
Transformer: th =[Rt + j(n)(Xt)] —
: (1000) (kvan)
3 [R.+ F(n) (X )11
Cable: Z . = < c <
(P ) (1000)
Line Voltage Regulator
Zi, = J(n)(2) (m) (£) (1)
Note: (VA)2
1. The term for ohmic conversion is used
(1000) (kvAa)

when the component impedances are expressed in DU,



2. Each component impedance is calculated at its own
rated voltage.
Step 2.
Convert each component impedance at its own rated voltage base
V., to a chosen common voltage base Ve by using the following
equation:

v 2
2 =z |-B
B A
VA
Step 3.
Calculate the total system impedance on the common voltage
base: - _ _ N _
= 7
ZTn gn * on * Ztn * Zln
Note:
It is necessary to calculate only the total impedances up to
the point (from load toward generator) where the voltage
harmonic will be calculated.
Step 4.

Calculate current harmonics generated by user eguipment using
procedures in section 320-2-f, unless provided by equipment
manufacturer or by measurement.

Step 5.
Calculate voltage harmonics at any point in the system from
the following eguations:

(1) Determine the individual voltage harmonic.
— *
vn ‘In ZTn’

(2) Determine the percent of individual voltage harmonic.

vn
Vn(%} = * 100%
\
nom
(3) Determine VTHD'
| 2 2 2
Voup = N Vp * Vg F Vb Lk V)



(4) Determine the percent of VTHD'

vV
$) = —2  « 100

%
nom

VTHD(

2. Sample Voltage Harmonic Calculation.

Calculate the voltage harmonics at the generator terminal
for a 400Hz power distribution system in Figure 1., on page 36.

Step 1.
Calculate all impedances of the circuit elements in the
system.
Generator: "
300kw, 0.8 pf, 450V, 400 Hz, X = X = 0.12 pu,
C,= 0.9, R_ =0 2g  d
1 T g
3 9n (0.9) (0.12) (450)°
an (1000) (300/0.8)
= 3 0.05832n @ on the 450V base
Transformer:

The transformer bank consists of three 25-kVA transformers
with a 450 volt delta-connected primary and 120/208-volt
wye-connected secondary. The transformer impedance at 400 Hz is
0.0097 + j0.0187 pu. ‘

[0.0097 + 3 n (0.0187)] (120)2

|
I

tn (1000) (75)

0.00186 + 30.0035%n Q on the 120V base.
Cable:

There is a total of 88 feet of three T-125 cables in
parallel. ©Each T-125 cable has an impedance of 0.11 + 30.17Q
per 1000 feet (cables #1 and #2 in Figure 1 on page 36).

. [0.11 + 5§ 0.17 (n)1 (88)

cnl

{3y (1000)

0.003227 + 30.0049%87n & on the 450V base.



There is a total of 66 feet of three T-125 cables in
parallel (cables #3 and #4 in Figure 1 on page 36).

[0.11 + 3 0.17 (n)] (66)

cn2 (3) (1000)

0.00242 + 350.00374n Q on the 120V base.

Line Veoltage Regulator:

(n) (2) (1) (400) (25 * 107 %)

i

Zln

It

30.0628n Q on the 120V base.

Step 2.
Convert the impedances to the common voltage base.
With the chosen common voltage base V_ of 120V, the impedance Z

T B B
is: -
120V°
zZ. = 2. |—
B A 450
= 0.0712A
Then, .
gn = 7 0.05832 (n) (0.071)
= 3 0.00415 (n) &
cnl = [0.00323 + 3 0.00499(n)1(0.071)
= 0.00023 + 3 0.00035 (n) Q
Step 3.

Calculate the total system impedance in the common voltage
base 120V:

gn = 0 + 3 0.00415n @

AN
I

0.00186 + 3 0.0035%n @
tn



= (0.00023 + 3 0.00035n Q

cnl

z = 0.00242 + j 0.00374n Q
cn2
Z,, =0 + 3 0.0628n Q

The total system impedance on the 120V base is:

ETn - Egn * Ecnl * E§n2 * EEn * ~Z_ln
= 0.00451 + j 0.0746n Q
For n=25, 7, 11, and 13
Zoe = 0.00451 + 5 0.0746(5)
= 0.373 /89.3° Q

= 0.00451 + § 0.0746(7)

T7
= 0.522 /B89.5° Q

Zppy = 0-00451 + j 0.0746(11)
= 0.821 /89.7° Q

Zpyy = 0-00451 + 3 0.0746(13)

= 0.970 /89.7° Q

Step 4.

‘ Calculate current harmonics generated by user equipment.
Current harmonics in this case have been provided by the user
equipment manufacturer. The currents, in rms, for the AN/USM-470 (V)
are:

I

5 4.8 amp, I = 3.5 amp,

~ = 1.0 amp

~11

I3 = 0 (13th and higher harmonics are negligible)

AN/USM-470 has only 3 current harmonics, the others are
negigible. For another piece of equipment other current harmonics
maybe present, including triplen and even current harmonics.



Step 5.
Calculate the voltage harmonic.

(1) . Calculate individual voltage harmonic.
= % 7
Vg = 115 * Zpgl
= 4.8(0.373)
= 1.79 volts
Vg = 11q % 2l
= 3.5(0.522)
= 1.83 volts
Via = g % Zpqg
= 1.0(.821)
= 0.82 wvolts
Viz = 0
(2) . Calculate total voltage harmonic distortion:
| 2 2
Vegp =\ Vs * Vo 4V

|
J(1.799% + (1.83)2 + (0.82)2

i

I

2.69 volts

.KC -
(3) . Calculate the percent of VTHD'

v
- THD 100
v
nom
2.69
= =% 100
120

\

ap (%)

2.24

i



320-2-£. Woncharacteristic Current Harmonic

Perfectly balanced conditions are rarely achieved in practice,
and noncharacteristic current harmonics are produced when phase
currents are unbalanced. A nonlinear load is likely to produce
current harmonics of all orders in a system, but low orders of
noncharacteristic current harmonics are normally much smaller than
those of the adjacent characteristic current harmonics. For example
the 4th current harmonic is normally much smaller than the 5th one .

Unbalanced conditions are resulted from three-phase voltage
unbalances, from differences of generator or transformer reactances
between phases, or from different firing angles of converters
{(nonlinear loads)in each phase.

Appendix 1 shows the derivation of noncharacteristic current
harmonics for nonlinear loads. The current waveform is shown in
Figure 1-1, on page 37.

1. MHNoncharacteristic Current Harmonic Calculations.

Step 1.

Obtain the firing angle{a) of rectifier loads for each phase
from equipment manufacturer. The normal firing angle is 30°, which
produces a 120° current pulse width in each phase. The angle (o)
is designated as (a_) and (an) in the negative and positive cycles
respectively of the”current waveform.

Step 2.
Determine the commutation angle u for each phase from
equation: :
Ed cos (o) + cos{e + u)
Ego 2

This equation must be solved iteratively for u. The no-load
and with load dc voltages must be known or estimated for new
equipment. If the equipment being analyzed is similar to the
existing one, the angle u can be determined by measuring an
oscilloscope trace of a current from the existing equipment. The
above equation is derived in reference {(g), page 87.



Step 3.

Estimate p from the current waveform by taking the absolute
value of the gquantity 180° minus the angle between centers of
the positive and negative waveforms.

Step 4.

Calculate a and b from the following equations derived
in Appendix 1:

-I
a = unzn [cos(nap) - COS n(aP + u) + cos n(p - an)
- cos n{p - an+ u) + cos{(nn) {cos n{(u - ap)
- cos(nap) - COS n(an+ B) + cos n(an+ B + uyll, (100)
_Im
bn = unzn [sin(nap) - sin n(ap+ u) + sin n{(p - an)
- sin n{pf - an+ u) + cos(nn)[sin(nap) + sin n{u = ap)
- sin n(an+rB) + sin n(an+ B+ wll, (101)
Step 5.

Calculate current harmonic In
The components a_ and b_ can be combined to give current
harmonic wvalues. These currents should be normalized. The

normalizing value is the fundamental current for a square wave,
which is:

il

1.10266 * Im
Then,

| 2 2
Jan + b

I (%) = * 100
(1.10266)Im

..16..



Sample Noncharacteristic Current Harmonic Calculations.
Calculate current harmonics In (for this example

arbitrarily choose n = 1, 3, 13, and 20) using the

simplified waveform shown in Figure 1-3, on page 45.

Step 1.
From Figure 1-3:

o = 27°, o_ = 29°,
P n

Step 2.
From Figure 1-3:

u = 0.001 radian/or 0.0573°

Step 3.
From Figure 1-3:

p = 0°

Step 4.
a. Calculate a_ from equation (100):

For n = 1

a; = 318.31Im{cos(27°) - cos{27.0573°) + cos(~-29°)

- cos(-28.9427°) - 1l{cos(=-26.9427°) ~ cos(27°)

cos(29°) + cos(29.0573°) 11}

= 0.000531
m

As above, other calculated wvalues for a, are:

a, = - 0.000061I_, a
m

3 = - 0.000621_, a = - (0.020461I
m m

13 20



b. Calculate bn from equation (101):
For n = 1
blz - 318.31Im{sin(27°) - 8in(27.0573°) + sin(-29°)
- 8in(-28.8427°) - 1[sin(27°) + sin(-26.9427°)
- 8in(29°) + sin{29.0573°)1}

= - 318.31I (-0.00353)

i
+
2

L1241
m
As above, other calculated values for bn are:
b3 = 4 0,04431m, b13 = 4+ O°O9521mj b20 = - 0.000ZOIm
Step 5.

Calculate current harmonics In in percent:

| 2 2
an + bn
In(%) = * 100
1.102661 & &
m
For:
n = 1, then Il(%) = 101.94
n = 3, then 13(%) = 4.02
n = 13, then 113(%) = 8.63

= Q. e
n 20, then IZO(O) 1.86
Notice that when u = 0°, a_ is negligible for odd

harmonics, and bn is negligible for even harmonics.

Table I, on page 34, lists additional calculated
current harmonics up to the 37th.



320-2~g. Current Harmonic Reduction by Multiphase Transformers.

There are some transformers with multiple secondary windings
which could reduce current harmonics in the primary windings. When
transformer secondary windings are phase-shifted certain current
harmonics in the primary windings will be reduced.

Figure 2-1 shows several transformer configurations that
provide phase shift. Multiphase transformers generally reduce only
characteristic current harmonics, but their effectiveness is
somewhat reduced when unbalanced conditions are encountered.

A 6-phase(l2-pulse)transformer will reduce the 5th and 7th
current harmonics and their multiples even in an unbalanced system.
Equations for current harmonic reduction by multiphase transformers
are derived in Appendix 2.

1. Calculation of Current Harmonic Reduction by a 6~phase Secondary
Delta Wye Transformers.

The transformer connection is shown in Figure 2-2, on page 51.
Step 1.
Calculate the currents in the secondary windings.

a.. Calculate the secondary currents in the Wye windings.

Phase A: Secondary current I is calculated from:

SYAn
37

= 3 [a
=1

ISYAn cos (n®) + bnASLn(nG)]

nA

Where a and bnA are calculated from equations (100) and

(101) derived in Appendix 1.

Phase B: Secondary current ISYBn is calculated from:

- 37

I = Z

SYBn ml[anBcos(ne) + an51n(n®)]



With:

-Im

a g = 5 [cos n(ap+ 30°) - cos n(ap+ 30° + u) (200)
un n
+ cos n(f + 30° - an) - cos n(p + 30° - an+ u)
+ cos{nn) [cos n{u + 30° - ap) - COS n(ap + 30°)
- cos n(an + 30° + By + cos n(an + 30°+ B + u)]},
...Im

an = 5 sin n(ap + 30°) - sin n(ap + 30° + u) (201)
un~n
+ sin n(B + 30° - an) - sin n(p + 30° - o + u)

+ cos(nn) [sin n(ap + 30°) + sin nf{u + 30° - ap)

- sin n(an + 30° + B) + sin n(an + 30° + B + u)]}

Phase C: Secondary current I is calculated from:

SYCn
. 37
ISYCn = izl[anccos(n@} + an31n(n®)]

Where a, and bnC can be calculated also from equations

C
(200) and (201) with a phase shifted angle of (-30°).

b. Calculate the secondary current in the Delta windings.

Phase A: Secondary current ESDAn is calculated from:
T _ (ISYBn * ISYCn)
SDAnN
V3



Step 2.

Calculate the corresponding primary current harmonic Ip
from equation:

L= (Isyan * Ispan’

P 2

The primary current must equal to half of corresponding secondary
currents so that the primary transformer rating will remain the same
for the 6-phase(l2-pulse) transformer as for the 3-phase (6-pulse)
transformer.

Step 3.
Normalize the current I
I
In - P
1.102661
m

Step 4.
Express the primary current harmonic In in percent

0.5 (I + T )
I (%) = SYAn SDAnNn x 100

1.102661
m

Sample Current Harmonic Reduction by a 6-Phase Secondary Delta Wye
Transformer with Identical Phase Currents in the secondary windings.

The waveform and firing angles will be the same as for the sample
noncharacteristic harmonic calculation in 320-2-f. Even though the
waveform used in Figure 1-3 on page 45, is not symmetrical, this
waveform is used for all three phases and, for a balanced system, the
5th, 7th, 17th, 19th..current harmonics will be cancelled in the
primary windings. Noncharacteristic current harmonics will not be
cancelled, but may be reduced. ‘



For this example, assume the system is balanced so that all phase
currents are identical. For each phase let:

ap = 27°, o, = 29°,u = 0.0573°, p = 0°

A. Calculate the 5th current harmonic in the primary winding.

Step 1.

a. Calculation of currents in the secondary Wye windings.

Phase A current ESYAS
The analysis in section 320-2-f showed that a = 0 for the odd

harmonics when u is approximately equal to zero. Therefore, all a_
terms will be zero.

Then, by substituting the values of «

n? %y 4, and B in
equations (100) and (101): p

g, = 0 (n is odd and v is small)

bSA = 12&7321m{sin(135°) - s5in(135.286°) + sin(-145°)

- sin(-144.714°) - 1[sin(135°} + sin(-134.714°)

sin (145°) + sin (145.286°) 1}

f

= 0.19431
m

Then the 5th current harmonic of secondary wye phase-A is:

ISYA5= 0.1943Imsin(5@)
Note: This value corresponds to:
| 2 2
Ja +b
T (%) = —2 3B .00
1.102661
m
0.1943
I.. (%) = * 100
2 1.10266
= 17.62

This value is listed in Table I, on page 34, for the 5th current
harmonic.

...,22...1



Phase B current ISYBS

Similarly, replace values of o s o, Uy and B in equations
(200) and (201): P

agp = o, bSB = - 8.8344Im

—8.8344Imsin(5®)

Then, _
Tsyps™

Phase C current ISYCS

Again, as above by using equations (202) and (203):

g~ = 0, b5C= + 9.171Im

$.171I sin(56)
m

Then, _
Tsyes™

b. Calculation of currents in the secondary Delta windings.

From equation in step (1), the current in the Secondary
Delta phase A is:

Igpas = (1/V3)(-8.8344+ 9.171)I sin(56)
Step 2.

The corresponding primary current harmonic I_ is:

I, = |0.5 [- 0.1943 + (- 8.8344 + 9.171)/1.732]|I

Step 3.
Normalize the current I

|0.50- 0.1943 + (- 8.8344 + 9.171)/1.732]1 |

1.102661m
Step 4.

Finally, the 5th current harmonic in the primary winding is:

j0.5[- 0.1943 + (- 8.8344 + 9.171)/1.7327]|
is(%) = * 100
1.10266

= 0

Thus the 5th current harmonic is completely eliminated in
the primary winding for a balanced 6é-phase(lZ2-pulse) secondary
Delta Wye transformer.
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B. Calculate the 13th current harmonic in the primary windings.

By following steps (1) through (4) in the above example,
the 13th primary current harmonic in percent is:

113(%) = 8.61
Thus the 13th current harmonic is not cancelled in a 6-phase

secondary Delta~Wye transformer. This value also appears in
Table I on page 34.

Sample Current Harmonic Reduction by a 6-phase Secondary Delta-Wye
Transformer with Different Phase Currents in the Secondary Windings.

Use the same conditions as in the above example with the
exception that in

Phase A: ap = 27°, o, = 29°,u = 0.0573°, B = Q°
Phase B: oy = ay = 30°,u = 0.0573°, B = 0°
Phase C: ap = a = 30°,u = 0.0573°, B = 0°

By following step (1) through step (4) in the above example,
the 5th current harmonic in percent is found to be:

15(%) = 1.19

So there is a very small maginitude of the 5th current
harmonic due to the differences in the phase currents.

Current Harmonic Reduction by Multiphase Zig-Zag Transformers.

Another method of current harmonic reduction by multiphase
transformers is to have their secondary windings connected in a
zig-zag configuration. Equations for calculating these current
harmonics are derived in Appendix 2.

4. Current Harmonics for a 6-phase Transformer with Different
Phase Currents in the Secondary Windings.

See Figures 2-4 and 2-5, for transformer configuration and
current harmonic component elimination.



Step 1.

Calculate primary current harmonics resulting from
secondary winding currents in the two phase-ghifting
transformers:

T = I __+ 31

nal nrl nil

InAz = Inr2+ 31ni2
Where:

InAl= Inrl - Inal’ since NBl: 0, Inil =0

pa— — o [+]

Inrz = 0.577Inazcos(n30°) O.S??Inczcos( n210°), (214)

Ini2 == O.577Inazsln(n30°) - O.577Inc231n(~n210°), (215)
Step 2.

Calculate the nth primary current harmonic in percent
from equation:

| 2 2 100

nilJr niz

' (21e6)
2n

B. Sample Current Harmonic Reduction by a 6-phase Zig-Zag Transformer
With Unequal Phase Currents in the Secondary Windings.

Calculate the 7th current harmonic, if currents I = 1.5 pu,
7al
and I7a2= 1702= 1.0 pu

Step 1.

Using equations (214), and (215), the real and imaginary
components of I7al and I7a2 currents at the 7th harmonic are:

T7a1 = L9227 T947 = 1.5pu, Ngy= 0, I,.,=0

I7r2 = -1.0 pu, I7i2 = 0
Step 2.
From equation (216), the 7th current harmonic in percent is:
2
I7(%) = (J.S /2*%7)y * 100

Il

3.57
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The 7th current harmonic does not cancel. However, it is much
smaller than the 7th current harmonic for a standard 3-phase
(6-pulse: 17(%) = 14.28 with o = o = 30°,u = 0°, B = 0°)
transformer. P

Table II, on page 35, lists additional calculated current
harmonics up to the 49th.

C. Current Harmonics Reduction by a 9-phase Zig-Zag Transformer
with Equal Phase Current in the Secondary Windings.

Figure 2-6, on page 62, shows the transformer configuration.

Step 1.

Calculate primary current harmonics resulting from secondary
winding currents for the three phase-shifting transformers from
equations:

Inal - Inrl * jInil
‘naZ - Inr2 * jIniZ
EﬁaB - Inr3 N jIni3
Where:
Inrl . Inal’ since 317 0, Inil =90
Inr2 = O.7421nazcos(n20°) - O.3951nczcos(—n220°), (221)
Ini2 = O.7421nazsin(n20°) - O.3951nc25in(~n2200), {(222)
I3 = O.3951na3cos(n40°) - O.7421nc3cos(wn2000), (223)
Ini3 = O.3951na33in(n40°) - 0,7421nc3sin(~n200°), (224)
Step 2.

Calculate the nth primary current harmonics in percent
from equation:

{ 5 5 100
In(%) = J(Inrl+ Inr2+ Ian) + (Inil+ IniZ+ IniB) * 3n ¢

(225)



D. Sample Current Harmonic reduction by a 9-phase Zig-zZag
Transformer with Equal Phase Current.

For this example, calculate arbitrarily the 13th current
harmonics in the primary windings.

Let the magnitudes of currents IlBal’ Ichl’ 113a2’ and Ich2
equal to 1.0 pu.

Step 1.
Calculate the real and imaginary components of currents

Il3Al’ 113A2’ and I13A3 at the 13th harmonics as follows:

Ti3a1 = I13p1 = T13ap = 1-0r since Ngy= 0, I;34; =0

I, = 0.742c0s(260°) - 0.395c0s(-2860°) = =~ 0.500

I,,,, = 0.7425in(260°) - 0.395sin(-2860°) = - 0.866

I, .5 = 0.395c0s(520°) - 0.742cos(-2600°) = - 0.500

I,i;5 = 0.395sin(520°) - 0.742sin(-2600°) = 0.866
Step 2.

Calculate the 13th primary current harmonic in percent
as follow:

| 2 2 100
I;5(%) ={(1.0 - 0.5 -0.5 + (0 + 0.866 - 0.866) * = 0
3*13

Thus for a 9-phase zig-zag transformer, the 13th primary
current harmonic is eliminated if the system is balanced.

Table III, on page 35, lists additional calculated current
harmonics up to the 49th.

Note: See Appendix 2 on page 59 for the calculation of current
harmonic reduction by a l2-phase shifting transformer.
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320-2-h. Voltage Unbalance Calculations.

Voltage unbalances are caused by the following load
conditions:

© Single-phase unbalance in which one of the three phase
loads is different from the other two equal loads

(2, # 2, = 2).

0 Three-phase unbalance in which all three phase loads are
different(za # Zb # Zc)'

All equations for voltage calculations are derived in
appendix 3.

1. Voltage Unbalances for Single-phase Unbalance.

Two methods will be used to calculate the voltage unbalances.

Method 1. -- Single-phase Unbalanced Current fﬁ is known.
Step 1. _ _ .
Calculate line-~to-line voltages, V_., V. , and V from
. ; ab bc ca
the following equations:
Vop = (372) (1 - I,25) + J(3/2) (1 + I.25) (302)
vbC = - 331 + quz) (303)
ca = (3/2)(qu2 - 1) + 3KW3/2) (1 + I,%5) (304)
Where:
22 = R2 + sz

Generally cable resistances are assumed to be balanced,
and generator negative sequence resistence is negligible.

Step 2.
Calculate the percent voltage unbalance:
<vmax - vﬁin)
v (%) = * 100
unb
Vav
Where: _ _ .
_ ivéb[ i }vbc{ * tVcal

av 3
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Sample Voltage Calculations for Method 1.
Let consider a 450V, 60Hz, 1000kW generator with:

ng = 0.2 pu, Rg = 0. So that 2, = 0.2/90° pu.

The three-phase currents in pu are:

T = 0.3 /-36.86°
a P ——

Ip = 0.3 /-36.86° + 0.1 /-53.13°

T =0.3 /-36.86°
c PRI

fﬁ = 0.1 /-53.13°, is the unbalanced current in phase B.

load current.

Step 1.
Calculate line-to-line voltages as follow:

il

ap = (3/2) 11 - (0.1 /-53.1° * 0.2 /90°)]
+3(3/2)[1 + (0.1/-53.1°)(0.2/90°)]
= 1.5 - 0.03 /36.9° + j(0.866 + 0.0173/36.9°)

= 1.7006 /30.4° pu

Vi = “33[1 + (0.1 /-53.1°) * (0.2 /90°)]
= 1.760 /270.7° pu
ey = 1.50(0.1 /-53.1°) * (0.2 /90°) - 1]
J3
+ 3 — [T + (0.1 /-53.1°) * (0.2 /90°)]
2

= 1.736 /148.9° pu
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So V
m

ax 1.736 pu, V i = 1.7006 pu

v
av

1.732 pu

Step 2.

Calculate the percent voltage unbalance.

(1.760 - 1.7006)* 100

\% (%) =
unb * 1.732

i
(o8]
>
w

Method 2. -- Single-phase Unbalanced Impedance is known.

Step 1.

Calculate phase voltages from the following
equations:

ﬁa = K[R + 3X], (308)

_ [ R V3 _ V3 X

Vy = K| (- — + —X + 43x2) - J( —R + =) |, (309)
. 2 2 2 2

. R V3 _ V3 X )

Ve = Kl (- — = —X - 43X,) + J(—R - -)|, (310)
. 2 2 2 2

Step 2.

Calculate line-to-line voltages from equations:

b = va - vb , (311)
Gbc = ﬁg - ?C , (312)
vca = GC - Va , (313}
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Step 3.
Calculate the percent voltage unbalance:

Vmax - Vmin
v (%) = * 100

v
av

Sample Voltage Calculations for Metod 2.

Let the unbalanced phase impedance be:

; Z =R + X
: = 6 + 37.8 pu
: And _ _
zzzzzgzsz ; ( Ry=0 )
= 30.20 pu
Step 1.

The phase voltages are obtained by substituting the

value of R, X, and X2 into equations (308), (309), and (310)
in step (1)

V, = K[6 + 37.8]
V, = K[4.1 -39.1]
VC = K[-10.1 + j1.3]

Step 2.
The line-to-line voltages are:

V,, = KI[1.9 + 316.9]
= 17.006K/83.6° pu

Vpe = K[14.2 - 310.4]
= 17.60K/-36.2° pu

cs = K[-16.1 - 36.5]

= 17.36K/202° pu
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Step 3.
The percent of voltage unbalance is:

K[17.60 - 17.006]

!

Vunb(%)

* 100
K17.32

= 3.43

Voltage unbalances due to the unbalanced phase load for
various load power factors may be found from Figure 3-5 on page 72.

2. Voltage Calculations for Three-Phase Unbalanced Load.
In this case all three phase loads are different.
Step 1.

Calculate line-to-line voltages from the following
equations:

2
= _ 2_ = T = = 25 _ T
&ab = KZ{(a 1)(22bZa + Zb) + 3ZZg(a Zb Za)}’ (320)
Vie = Kz{(a - a )(Zb + BZZga + ZZa b)} ' (321)
_ _2 — _ - _
Vea = Ko { (1 - a) (2, + ZZaZb) + BZzg(Za - aZb)}, (322)
Step 2.
Calculate the percent voltage unbalance.
Vimax Viin
Vunb(%) = * 100
v
av

Note: If Ea is very large with respect to Eb(i.e, Za= lOOOEb)
the single phase case is duplicated.
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Sample Voltage Calculations for Three-Phase Unbalance

Let

25 j1.0 pu , (power factor = 0)

3|
[

a 31.5 pu

Z2g = j30.2 pu

Step 1.
Calculate line-to-line voltages:

Ve = K0 (%= 1) [2(31) (31.5) + (317
+3(50.2) (31) (a®- 1.5))

= K2{~4(-1.5 - J.866) - 0.6(-2 - j0.866)}

= K, (7.2 + j3.984)

= 8.22K,/28.9° pu

<
I

be = Kplfa = a®) 1D + 3(50.2) (31) + 2(31.5) (G1) 1)
= K, {(-1 - 3 - 0.6)3V3}
= 7.97K2/-90° pu

2 .
ca = KptL(31) + 2(31.5) (31)1(1-a) + 3(30.2)[31.5 - a(51) ]}

= K2{~4(1.5 - 30.866) - 0.6(2 - j0.866)}

= K, (=7.2 + j3.98)

Il

8.22K2/151.1° pu

Step 2.
Calculate percent voltage unbalance.

K2(8.22 - 7.87)

il

Vunb(%) * 100

8.137K2

il
w

.07
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TABLE I

CURRENT HARMONICS IN AN ASYMMETRICAL CURRENT WAVEFORM
Waveform of Figure 1-3/page 45, u = 0.0573°, ap = 27°, o, = 29°, B = 0°.

Calculated Barmonics by
n In(%) 1/n Rule (%)
1 101.94 100.00
2 1.13 50.00
3 4.02 33.33
4 0.75 25.00
5 17.62 20.00
6 1.97 16.67
7 15.74 14.30
8 1.44 12.50
9 3.92 11.11
10 0.35 10.00
11 6.34 5.10
12 1.83 9.09
13 8.63 7.70
14 1.69 7.14
15 3.72 6.67
16 0.07 6.25
17 2.85. 5.90
18 1.60 5.56
19 5.69 5.30
20 1.86 5.00
21 3.43 4.76
22 0.48 4.55
23 1.12 4.30
24 1.31 4.17
25 3.93 4.00
26 1.93 3.85
27 3.08 3.70
28 0.85 3.57
29 0.12 3.40
30 0.9¢6 3.33
31 2.71 3.20
32 1.91 3.13
33 2.68 3.03
34 1.17 2.94
35 0.47 2.90
36 0.58 2.78
37 1.79 2.70
n I, 1/n
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TABLE I1II
6~Phase (12-Pulse) Transformer Current Harmonics with Unequal
Phase Currents in the Secondary Windings.

Harmonic No. (n) I (%)
5 5.00
7 3.57

11 11.36
13 9.62
17 1.47
19 1.32
23 5.43
25 5.00
29 0.86
31 0.81
35 3.57
37 3.38
41 0.61
43 0.58
47 2.66
49 2.55
n I

n
TABLE III

S-Phase (18-Pulse) Transformer Current Harmonics with Equal Phase
Currents in the Secondary Windings.

Harmonic No. (n) I_ (%)
5 0.00
7 0.00
11 0.00
13 0.00
17 5.88
19 5.26
23 0.00
25 0.00
29 0.00
31 0.00
35 2.8¢6
37 2.70
4 41 0.00
43 0.00
47 0.00
49 0.00
n I
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(3) T-125 (3) 125 @) T-125 (3) =125
20 68" 302 36
CABLE 1 CABLE 2 CABLE 3 CABLE 4
GEN LW
— L= 25 -
UNE POWER
300 k¥, 0.8 pf 80, VOLTAGE PANE
450 VOLT, 400 Hz SMITCHBOARD TRANSFORMER REGAATOR
X = 012 pu 0.0087 + 0187 pu
d 450/120 VOLTS

Figure I: Sample Power Distribution System.
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APPENDIX 1
CALCULATION OF NONCHARACTERISTIC CURRENT HARMONICS FOR NONLINEAR LOADS

Figure 1-1 shows a typical single-phase current waveform that will
be analyzed. This waveform assumes a trapezoidal current, which
approximates many rectifier controlled loads with large inductance.
Figure 1-2 shows a circuit that will produce a trapezoidal current.

The following assumptions have been made in developing the
equations for noncharacteristic current harmonics.

All commutation angles are approximated as straight lines.
The current harmonics will vary with commutation angle u.
All turn-on and turn-off commutation angles are equal.

The firing angle is assumed to be close to 30°, so that the
triplen harmonics will nearly be cancelled.

All shunt capacitances (cable charging, power factor
correction) are negligible.

o Current harmonics and voltages are not calculated for

0000

]

short circuit conditions. Only load currents (balanced
or unbalanced) are considered.
o The load of a power converter is inductive, and large

enough so that the current will be constant outside of
the commutation interval.

ap|+u 7T~lap
Im T
- T+ & +f3 T+ - a, +u
— [ - £ (Xg)
ﬂ—ap+u 277
a
p
o+ ! f
ﬂ+an+ﬁ+u 2ﬂ-+ﬁ_an
Im +
: u
(%)
Tm o+
u

Figure 1-1: Current Waveform with Imbalances
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AN % LOAD

Figure 1-2: Typical 6-Pulse Converter
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The Fourier analysis of the waveform in Figure 1-1 may be
obtained relatively simple without integration. The Fourier
coefficients may be calculated from the jump function and its
derivatives. A jump is the difference between the right-hand
and left-hand limits of the function or its derivatives. An
upward jump is positive, and a downward jump is negative.

The following notations are used:

jS = jump of function at point X, -
&
jS = Jump of first derivative at XS.
3%
js = jump of second derivative at Xs‘

If the function or its derivative is continuous at X

4

s’ then the

value of js (or js) is zero.

Xs = jump point of waveform.
f(XS) = value of function at Xs'
¥
f(XS) = value of first derivative at Xs‘

The waveform in Figure 1-1 is represented by equation:

+ iziancos(ne) + bn31n(n®)}

For this analysis, the dc component ay is taken to be zero.
4 ¥

The values of 7 _, js, and j_ at different values of X of the

current waveform in Figure I-1 are shown in Table 1-TI-



TABLE 1-I

FOURIER ANALYSIS USING JUMP FUNCTIONS

Xs Js s Is
Im

o 0 + — 0
P u
Im

o + u 0 - — 0
P u
Im

no- 0 - 0
up -
Im

N - .+ .1 0 + — 0
u
Im

]T+cxn+B 0 - — 0
u
Im

T+ oa t+ B o+ ou 0 + — 0
u
Im

2ﬂ+ﬁ-an 0 + — 0
u
I

2n + p - ao_ +u O -

..40..



The components a, and bn are calculated from:

1 8 18 !
a, = —[=- 3331n(nxs) - - I jSCOS(nXS)
nn s=1 n s=1
1 8 w
+ 5 T jSSln(nXs) + . ]
n- s=1
1 8 1 8 !
bn = —[ Z jscos(nxs) - — I 3831n(nxs)
nna  s=1 n s=1
1 8 "
- 5 z ]SCOS(DXS) + ...]
n s=1
In the above equations, js = 0 because the function is

continuous. All jS and higher derivatives are zero.

Therefore:
1 8 g
a = - —— X J _cos(nX_)
n n-n s=1 s s
1 8 !
bn = - 5 z jsSln(nXs)
nn  s=1
Where:
! I ! I ! I
. m . m . m
jl +“”"1]2“"‘”"‘ 138=“_"
u b u
| And
‘ Xl = ap, X2 = ap + u ... as per Table 1-I.



I
m

a = = {cos(no_) - cos n{a_+ u) - cos n(i - o_)
un?n P P p

+ cos n(n - ap+ u) = cos n{(n + o + B)

+~co8 n{n + an+ B + u) + cos n{(2n + B - an)

cos n{(2n + g - o + u)}

Expand the multiple angle arguments, then combine terms:

a, = - uign{cos(nap)— cos n(ap+ u) + cos n{p - an)
- cos n(p - an+ u) + cos{(nn) [cosn{u - ap)
- cos(nap)— cos n(an+ B) + cos n(an+ B+ wly, (100)
Likewise:
b = - ui‘;‘n{sin(nap)— sin n(a + u) - sin (@ - a)
+ sin ﬁ(ﬂ - ap+ u)}y - sin n{(n + an+ B

+ sin n{n + an+ B+ u) + sin n{(2n + B - o )

n

sin n{2n + p - o + u)}
Expand, then combine terms:

I

m . . .
bn = - {31n(nap)- sin n(ap+ u) + sin n(p - an)
un 7
- sin n - o_+ u) + cos{(nn) [sin(ne_)+ sin n{u - «o
(B n ) (nm) [ ( p) ( p)
- sin n(an+ B) + sin n(an+ B+ u)ll, (101)
The above equations reduce under certain conditions as
discussed below:
1. If o = o and n is even, then a_ = b_ = 0 . There are no
n o) n n

even harmonics for positive and negative waveform symmetry.



2. If o, = ap’ u = 0° and n is odd, a = 0, and only bn exists.

3. Standard Square Wave Representation

If a_ =oa_ = a = 30°, u = 0°, B = 0°, the waveform is a square
P n

wave. For n even, the components ar and bn are both equal zero.
4Im

For n odd, then a = 0, bn = ——| ¥ cog{na)sin(n®) |, and the
on

waveform is represented by equation:

2V31 1 1
F(Q) = — Misin(®) - —sin(50) - —sin(70)
n 5 7
1 1
+ —sin{lle) + —sin(136) ... ],
11 13

This equation is found in many references on rectifier harmonic
analysis.

4. Standard Trapezoid Wave Representation
Further simplification of equations (100) and (101) are possible.

Let B = 0°, « o = a = 30° so that a 6-pulse rectifier is
simulated. Thgn for characteristic harmonics only:

I
a, = - {4cos(na) [1 - cos{(nu)]}
un”n
Im
bn = - 5 [- 4sin(nu)cos (na)]
unn
| With a = 30°, the Fourier component Ch is:
_ 2 2
c, = J a. + bn



2V3 I, 5 5
<, = — 5 [1 - cos(nu)] ™+ sin” (nu)
un”n '
24—§Im 5 5
¢, = > V1l = 2cos(nu) + cos” (nu) + sin” (nu)
un n
4V§Im 1 - cos (nu)
un2n 2
4«/§Im
= 5 sin (nu/2)
un n
2V 3T
Since If = ; the normalized current harmonic In(%) is
n
“n
I (%) = — * 100
n T
£
2sin{(nu/2)
= * 100
2
un
1 sin(nu/2)
In(%) = — * 100 , (102)

n (nu/2)

which has the limit of 1/n as u — 0°. Note that equation
(102) applies only to characteristic current harmonics.

. Asymmetrical Square Wave Having Triplen Current Harmonics.
Using figure 1-3, with u = 0°, equations for triplen current

harmonics can be derived. Reference (h) shows the Fourier series
for the positive and negative pulses.

il

Let Ep variation from 120° of the positive pulse width.

|

Let e, = variation from 120° of the negative pulse width

In Figure 1-3, with e_ = 6°, ¢ = 2°.
p n



180" + f—*
I L
—— 126
'—"ap fe— Xn < 122"
1 e 180"
‘ oy = 2T
o, = 29°
u = 0.057°

g =0
Figure 1-3: Asymmetrical Current Waveform.

The equation for triplen current waveform is:

21 (M (120° + ¢_) M (120° + & )
E‘n(e) _n sin P ] + sin n

nn L 2 L 2

21 ( ne ne 1
= ——|8in P + sin
nn | L 2 2 ]

Then the normalized current harmonic I, in percent is:

F
n

In(%) * 100

Ie

1 ne ne
sin|—=E2—| + sin|—= x 100 ,  (103)
nV3 2 2
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If nep and ne —are small, eguation (103) reduces to:

€ + &
T_(%) = B Ts 100
2V3
Then for e_ = 6°, e, = 2°, and n = 3
(6°+ 2°)
I3(%) = * 100

2Y3 * 57.3°/radian
= 4.03
which is the value calculated in Table I on page 34.
6. Asymmetrical Square Wave Having Even Current Harmonics.

Using Figure 1-3, with u = 0°, the equation for even current
harmonic(n is a multiple of 2) is simplified as follows:

21m“ n(120° + ¢ n(120° + &
Fn(@) = ——lgin Pl _ sin
onn| 2 2 !
21 | ne ne
Fn(e) = ——Ilcos (60n) |sin( p) - sin{ }
nn | 2 2
ne ne
+ sin(60n) [cos (—E) - cos (—2) || , (104)
2 2

7. Asymmetrical Square Wave with Negative pulse Displaced.
If the waveform has positive and negative pulses which are
identical but displaced by (180° + B), then the even current

harmonic is:

21 120n
m

y{cos n(® + B) - cos(n®)]

n sin{np)sin (n6)



and the normalized current harmonic I, in percent is:

F
I (%) = |-2| * 100
n T
£
sin{(np)
= —— % 100 , (105)
2n

8. Representation of Maximum Trapezoidal Current Waveform.

The single-phase line-to-line short circuit current is:

(Vo - V)
I - _a b
(X_ + )
Where: a Xb
X and X are the commutation reactances which is the sum
of generator, cable, and transformer reactances.
. _ J 2 2
Va - Vb = Va + Vb - 2VaVbcos(®)
If © = 120° ==>V_ -V, =43 V
a b a

For the general case, Va # Vb # Vc and Xa # Xb # Xc

Variations of several percent can be expected between the
line voltages or between commutation reactances. Likewise, the
firing angles may vary by several degrees. There are six firing
angles -- the positive and negative ones for each of the three
phases.



APPENDIX 2
CALCULATION OF CURRENT HARMONIC REDUCTION BY MULTIPHASE TRANSFORMERS

For the purpose of this analysis, the following assumptions
were made:

o The leakage reactance of the transformer affects the
commutation angle.

o The primary line current is phase shifted by 30°, since
the tansformer is connected in delta-wye.

o For a multiphase transformer arrangement, the secondary
winding phase-shifting angle required for each transformer
1s 360° divided by the pulse number.

1. Current Harmonic Reduction by a 6-phase Secondary Delta Wye
Transformer.

Phase shifting for secondary delta-wye transformers merely
requires shifting currents by +30° and -30°. The current harmonic
is obtained by adding the resulting Fourier series components of
the current waveform. Figure 2-2 shows the transformer connection.

The secondary,winding currents are calculated as follows:

Currents in Wye Windings.

Phase~A current ISYAn at the nth harmonic is:
_ 37
ISYAn = i=l[anAcos(n®) + bnASln(DG)]

Where components a and b are calculated from equations (100)
and (101) derived in Appendix 1.

Phase~B current ISYBn at the nth harmonic is:
_ 37
ISYBn= z [anBcos(nG) + an31n(n®)}

n=1

Where the ccmponents a and an are calculated as follow:

nB



I
m
a = - cos n(ao_+ 30°) - cos n(a_+ 30° + u)
nB unzn( P P
+ cos n(p + 30° - an) - cos n(fp + 30° - o + u)
+ cos(nn) [cos n{u + 30° - ap) - cos n{o_+ 30°)

- Ccos n(an+ 30° + B) + cos n(an+ 30° + B + u)l|, (200)

Similarly:
Im . . ' .
an = - unzﬂ[Sln n(ap+ 30°) - sin n(ap+ 30° + u)
+ sin n(p + 30° - an) - sin n(p + 30° =~ o + u)

+ cos (nn) [sin n(ap+ 30°) 4+ sin n(u + 30° - ao_)

p
- sin n(an+ 30° + B) + sin n(an+ 30° + B + u)}J, (201

Phase-C current I at the nth harmonic is:
SYCn

37
ISYCn = i=1[anCCOS(n®) + an51n(n®)]
With:
Im
a = - cos n{a_=- 30°) ~ cos n(a_~- 30° + u)
nC un2n P P
+ cos n(p - 30° - an) - cos n(p - 30° - o + u)
+ cos(nn) [cos n{u - 30° - ap) - cos n{a_=- 30°)
- COS n(ap— 30° + B) + cos n(an- 30° + B + u)]} , (202)
Im
b = - sin n{a_~- 30°) - sin n{a_=- 30° + u)
nC unzn P P
+ sin n{B - 30° - an) - gin n(p - 30° - an+ u)
+ cos(nn) [sin n(ap— 30°) 4+ sin n{u - 30° - o )

-~ sin n(a_ = 30° + B) + sin n(a_~ 30° + B + u)]], (203)
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WYE CONFIGURATION DELTA CONFIGURATION

7\ 15y

4 1627 V
\Z / A\ >/
| —
300
PHASE <
DIFFERENCE
150

/ 34.4V>\ H —

6-Phase (12-Pulse) Transformer.

2}; e
3-PHASE .
PRIMARY 0

% E i\ ..20 Q

9-Phase (18-Pulse) Transformer.

Figure 2-1: Multiphase Transformer Connections
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Currents in Delta Windings.

Phase-A current ISDAn is calculated from:

- Tsyen * Isyen!

Ispan =

NE

_ The algebraic sum of currents TSY o and YSY is divided by
|3 because the voltage in Delta trafsformer mase be |3 times the
voltage in Wye transformer for the transformer power rating to
remain the same.

Figure 2-2: 6-Phase Secondary Delta Wye Transformer Connections.
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2. Current Harmonic Reduction by Multipbase Zig-Zag Transformers.

Current harmonics in the primary winding of a multiphase
transformer can be eliminated or reduced by considering a transformer
connected in a ziz-zag configuration. The transfomer is defined as
having primary winding with unity turns N  and secondary winding
with two parts of N, and N, turns. Seconéary windings from two
separated legs are Connectéd together to provide a phase-shifted
current. For the purpose of this analysis, the secondary phase-A leg
with N turns and phase-C leg with NBk turns are connected together.
The primary phase-A winding is chosen?

The primary and secondary winding currents are related by:

Tnak = MoxTnax = NarTpcke (204)

The positive integers k indicate number of phase-shifting
transformers. The vector diagram called the current compensation
triangle is shown in figure 2-3. A compensation triangle should be
drawn for each phase-shifting transformer.

Figure 2-3: Current Compensation Triangle.
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I and I are equal to 1.0

If the magnitudes of currents I nck’ 2}

nak’

pu(the system is balanced so that certain current harmomics will

cancel), then the number of turns N2k and N3k can be computed as
follows:
N3k _ 1
sin(wk) sin(120°)
Then, 2 sin(wk)
Ny = r (206)
V3
Also
N2k _ 1
sin{s0°~ wk} sin (120°)
Ny = (2/V3)sin (60°- vy
Expand the sine term:
sin (v )
N = cos(y,) - —mm , (206)
2k k V3

The angle, Vs between the primary and the secondary windings is
fixed once the pulse number (converter type)is chosen. This angle
is determined as follow:

360°

<
WH

’ (207)

(pulse number)
The computed values of N2k’ N3k’ and ¥y for 6, 9, and 12-phase
transformers which correspond respectively to 12, 18, and 24 pulse

converter systems are shown in Table 2-I.



Note that for a system with a small voltage unbalance, the
angle between phases will be different from 120°. If it is 119°
on one phase(and 120° on the others) then there will be no perfect
cancellation of currents for balanced loads. For example, in the
case of a 6-phase transformer (12-pulse)if one of the compensation
triangle angles is not equal to 120°, the current fﬁAz will not

completely cancel with YnAl'

Likewise, if the currents I ... I ;
naz nak

and In 'Inck’ in

c2°°
phase-A and phase-C legs respectively are not equal to 1.0 pu, then
there will be an incomplete cancellation of currents, and for

example, some 5th current harmonic will appear in a 6, 9, or 12
phase-shifting transformer.

The terms positive and negative sequences arise as follows:
In the secondary windings, at the fundamental frequency, phase-C leg

is shifted from the phase-A leg by 240°. Consequently, currents

Inck have an added phase-shift of n240° at each harmonic. This

characteristic gives rise to the positive and negative sequence

components. At the 5th harmonic, current ISck is shifted by 5%240°

from current IBak' The normal rotation of phases at the fundamental

frequency is abc. Since 5%240° is the same as 120°, the phase-C

current fsck  not the phase-B current, follows prhase-A current fSak

when the vectors rotate counterclockwise. If the vectors rotate

clockwise, then the phase rotation will be in the normal abc
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sequence. Therefore, the (6n-1) characteristic for 6-pulse

harmonics, the 5th, 11lth, 17th, ... are considered to be negative
sequence. The 7th, 13th, ... are considered as positive sequence
guantities.

The equation (204) for the currents at nth harmonic can be

rewritten in polar form as follows:

nak~  YorTnak T NapInck

Tnax™ NaxTnax/D¥y = NI, /nvy -n240° ,  (208)

The total current harmonic in the primary windings is then:
I_= x I . (209)
k

6-Phase (12-Pulse) Transformer.
There will be two phase-shifting transformers in which angles
v, and ¥, are equal respectively to 0° and 30°. One compensation

triangle should be drawn. From equation (209), the total primary

current harmonic I, in phase-A is:

In = InAl + InAZ

For the phase-shifting transformer number one (k=1) :

== . e (o]
Tna1 = Na1lpa1/nvy - NyqI o /0y, - n240°
InAl = NZIInalcos(nwl) - NBIInclcos(nwl-n24O°)

+3[N211nalsln(nwl) - NBlInC131n{nwl~n24O°)]



Tnaz = Noplpap/n¥y = NypIo /0y, - n240°

InAZ = NZZInazcos(n\yz) - N321nczcos(nw2 - n240°})
+J[N221na231n(nw2) - N321nC231n(nw2 - n240°)]

TABLE 2-I
TRANSFORMER PULSE NUMBERS VS. PHASE-~SHIFTING ANGLES AND NUMBER OF TURNS

P ANGLES NUOMBER OF TURNS
U
L
g ¥i Nox N3
S ¥ | Yo | ¥3 | ¥y | Npp| Nop | Nog | Noy | Nyj) Ny, | Ny | Ny
0° 1.00 0.0
12 - - - - - -
30° 0.577 0.577
0° 1.00 0.0
18 20° 0.742 0.395
40° 0.395 0.742
0o 1.00 0.0
24 150 0.817 0.299
30° 0.577 0.577
450 0.299 0.817
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Resolve into real and imaginary components:

Inrl = NZlIhalcos(nwl) - N31Inclcos(n\y1 n240°y, (210)

e . — s <o
Inil = NZlInalsln(nwl) N311nC131n(nw1 n240°), (211)

Thr2 = NopIjocos(ny,) - Ny, I ,cos(ny, - n240°), (212)

§

Ini2 = szlna251n(nw2) - N32InCZS1n(nw2 nz240°y), (213)
From the above Table 2-I for the 6-phase(l2-pulse)transformer:

0° ==> N

For vy

1.0, = 0

N3,

N22 = 0.577, N32 = 0.577

Then equations (211) through (213) can be rewritten as follows:

For Vv, = 30° ==>

Inrl = Inal = InAl’ Inil =0
Ian = 0.577Inazcos(n30°) - O.577Inc2cos(n30°— n240°y, (214)
Iniz = O.S77Ina231n(n30°} - O.577Inc231n(n30°~ n240°), (215)

The magnitude of primary current harmonic In in percent in phase-A is:

2 2 100

In(%) = J(Inrl+ Ian) + <Inil+ Ini2) * on ’ (216)

Figure 2-4 shows a 6-phase(l2-pulse)transformer with secondarv
windings connected in a zig-zag configuration. Figure 2-5 shows the
elimination of the 5th current harmonic components in each phase cZ
the primary windings. In phase-A, the 5th current harmonic componen=

I is cancelled with TA

A1 2°
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S-Phase (18-Pulse) Transformer.

In this case there are three phase-shifting transformers. Two
compensation triangles should be drawn, one with a phase-shift of
20° the other with a phase-shift of 40°. Using equation (209), the

total primary current harmonic fﬁ in phase-2& is:

T =7

n nAl+ InA2+ InA3’ (217)
Where:
For k = 1
Tnar = N21Tpa1fovy - NI /o, - n240°
InAl = NZlInalcos(nwl) - N31Inc1COS n(wl - 240°)
» ) . — g . - o .
+ j{NZlInalsln(nwl) NBlinclsln n(w1 240°)], (218,
For k = 2
Tnaz = Noplnap/Bvy = N3olp p/nv, - n240°
InA2 = szlnazcos(nwz) - N3ZIDC2COS n(\y2 - 240°)
+ ][N221na281n(nwz) - N32Inc231n n(\y2 - 240°)y], (219)
For k = 3
Tnas = No3Tna3fovy - Nyl s/owg -n240°
na3 = N23lpazCos(nvg) = NggI scos nyy - 240°)

+j{N231na3$1n(nw3) - NBBInCBSin n(w3 - 240°)1, (220)
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From Table 2-I, by substituting the values of Yy N2k’ and
N3k (with k¥ = 1, 2, 3 ) into equations (218) through (220),

the real and imaginary components of the currents are:

Inrl = InAl r Inil =0

Inr2 = O.7421na2cos(n20°) - 0.3951nc2cos(n20° - n240°), (221)
I = 0.742Inazsin(n20°) - 0.3951nczsin(n20° - n240°), (222)
Ie3 = 0.3951na3cos(n40°) - O.742In03cos(n40° - n240°), (223)
I 53 = O.3951na3sin(n40°) - O.7421nc33in(n40° - n240°), (224)

The magnitude of the primary current harmonic I, in percent in
phase-A is:

J 5 5 100
In(%) = (Inr1+ Inr2+ Inr3) +(Inil+ IniZ+ IniB) * (n3) ! (225)

Figure 2-6 shows a 9-phase (18-pulse)transformer with secondary

windings connected in a zig-zag configuration.

12-Phase (Z24-Pulse) Transformer.
There are four phase-shifting transformers, and three
compensation triangles should be drawn, with phase-shift angles of

15°, 30°, and 45°. Four current vectors must be added to find the

resultant:

In = InAl+ InA2+ InAB+ InA4’ (226)
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With similar procedures , equations for calculating

harmonics are:

the current

Inrl - InAl’ Inil =0

Inr2 = O.817Ina2¢os(n15°) .299Inc2cos(n15° - n240°), (227}
Ini2 = O.817Ina23in(n15°) .2991nczsin(n15° - n240°), (228}
Ian = 0.577Ina3cos(n30°) .577Inc3cos(n30° - n240°y), (229)
I,i3 = O.577Ina3sin(n30°) .577Inc35in(n30° - n240°), (230)
Inr4 = O.299Ina4cos(n45°) .817Inc4cos(n45° - n240°), (231)
Ini4 = O.299Ina4sin(n45°) .817Inc4sin(n45° - n240°), (232)

The magnitude of the primary current harmonic fﬁ in percent

in phase~A is:

I_(%) =

n

J(Inr1+IanﬁLIan%

+I

nr4

(Inil

+I

niz2tl

ni3

2

+I_.,) *

ni4

r (233)

(4n)

Figure 2-7 shows a typical arrangement for a l12-phase (24~-pulse)
transformer with secondary windings connected in a zig-zag
configuration. Figure 2-8 shows a vectorial elimination of the
1lth current harmonic components in the transformer primary

windings.
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Figure 2-8: 11th Current Harmonic Component Elimination.
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APPENDIX 3

CALCULATIONS OF VOLTAGE UNBALANCES DUE TO UNBALANCED LOADS.

For ungrounded systems, the zero sequence current IO is zero.

Derive boundary conditions from Figure 3-1:

Va = en + EaIa

=e + Ea(fl + 32)
55 = e + Eﬁfg

= e + Eb(azfi + afz)
VC =e_ + Ec'i'c

= e+ Z_(al, + a’I,)

Positive sequence voltage is:

V4 av. + a°v
- a jo) o]
V1 =
, 3
- 2 T 5 5 =
= (1/3)[en (L + a + a") + Il(za + zb + ZC)
— — 2.._ —
+ 12 (Za + a Zb + aZc)]
(2. + 2+ 7 (T + a’zZ, + az )
— — a b c — a c
Vl = Il + I,
3 3

Assume the unbalance occurs in one phase only.

— = 2 —_ I
Let Zc = Zb’ then (a f a)Zb = Zb
Then,
Z + 2z z_ -z
V.= 1, = bi 1, ] (300)
3 3



Negative sequence voltage is:

Vo + a“v,_ + av

<l
i

il

(1/3) e (1 +a+ az) + 'fl[ a b

7 Z. Z
+ fz a b c
3

N
o+
03
+

7~ 7D 7+ 27
v, =T, |—= bl 7| &2 b , (301)
2 1 3 2

From the above equations, the term (Eé - Eg)/B can be considered
as a mutual impedance between the positive and negative sequence

networks. If Ec is not equal to EE (or Ea), the symmetrical component

solution method does not simplify the problem. Figure 3-2 shows the

sequence connection which satisfies equations (300) and (301).

If Za = = , the system reduces to a single-phase load of 255. The

sequence connection diagram for this case is shown in Figure 3-3.



<|

Figure 3-1: Three-Phase Unbalanced Load Schematic.

Figure 3-2: Three-Phase Unbalanced Load Sequence Network Connection.
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Figure 3-3: Single-Phase Load Sequence Network Connection.

Voltage Calculations for Single-phase Unbalanced load.

Method 1 -- The Single-phase Unbalanced Current Tﬁ is known.
Let 61 = 1.0 + 30.0 pu
In Figure 3-4, with R + 3X = 0, then Yu = _fl = - EZ
Va = Vl + V:2
=V T L%
T, = a’v, + av
b 1 2
_ L% - aT 3
= a V1 aIuZ2



<l
[
*Y
<l
-+
w

Vab' a b

ca C a

Il
()
]
2
+
|
o
paf
3]
=
I
w

68 -

(302)

(303)

(304)



Method 2.-- Single-phase Unbalanced Impedance is known.

@
<
<
o

Figure 3-4: Single-phase Load Sequence Connection-Example.

In the above Figure 3-4, let consider:

z

il

R + 3X , the total single-phase unbalanced impedance.

zZ

5 = 0 + sz, the negative sequence impedance of the network

equal to generator negative sequence impedance Z2g



<l

Uﬁl

<l

li

i

i

vV, o+,
X
v, - 5V, 2
R + (X + X5)
_\71
- (R + 3X), (305)
R + 3(X + x2)
2.__. .
a Vl+ aV2

1 V3) _ 1 V3 X,
-—j——V1—jV1--+j—~
2 2 2 2 )R+ X+ X,

v, R V3 _
(- — + —X + \/3X2)
5)

2 2

- S5(—R + 4|, (306)

av

1

+ a2{7_2

1 V3) _ 1 V3 X,
- — + 3'—" Vl - ]Vl - T 3_—
2 2 2 2 R + j(X + Xz)

;

v, R V3X _ V3R X
(= = = —— = ~N3X,) + J(—— = —) |, (307)
I+ X,

._'7’0._~



Let

v
K = 1
R+ J(X + X))

Equations (305), (306), and (307)

“\Fa = K(R + jX),

_ [ R V3x% _ '

v, = K\(— ;- + ;—— + J3x2) - J(— + —)
_ (R V3% _

v, = K\(* ;— - ;—— - V3X2)

Finally the line-to-line voltages V

calculated from the following equations:

=T -7

ab a b
Vbc = vb - Vc !
V. _ =V -V ,

ca c a

reduce to:

ti— - —)

N

/

N

(308)

(309)

(310)

and V can be
ca

(311)

(312)

(313)

Figure 3-5 shows a plot of percent voltage unbalances vs. load power

factors for a number of ratios of XZ/ Z, calculated from equations

(311), (312), and (313).
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Figure 3-5: Voltage Unbalances Due to Single-phase Unbalanced Load.
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Voltage Calculations for Three-Phase Unbalanced Load.

The three-phase unbalanced load analysis is more complicated
than the single-phase load analysis.

The zero sequence currents do not exist because the system is

not grounded. Iao = IbO = ICO = 0
s . f1ig™ "M
] =
Then: g
Vl = Elg - I2Zlg’ (314)
o2
5 =
Then: 29
V, = - IZZZg’ (315)
Where:
Elg: Generator positive sequence voltage.
Elg: Generator positive sequence impedance.
Zég: Generator negative sequence impedance.
From reference (e), page 377, equation (484), for unbalanced
loads:
vl . ZOu 1 * ZZu 2 r (316)
V2 = Zlull + ZOu 5 ' (317)
Where:
Zoy = (1/3)(2a 2y 2
— _ — p— 2.._
Z1a = (1/3)(2a taz +a z.)

..'73....



1 o _

22u = —3—(2a + a Zb + aZc)
Equate (314) and (316):
I, (Zy, * zlg) + 2,1, = Elg (318)
Equate (315) and (317):
Ilzlu + 12(ZOu + Zzg) = 0 (319)
Solve for Il and 12:
- Elg(ZOu + ZZg)
I. = -
1 e o - o e
Zluz2u - (zOu * Zlg)(ZOu * ng)
E. 7
= _ lg71lu
12 =

ZluZZu B (ZOu * Zlg)(ZOu * ZZg)

Write equations for the phase currents:

Ia = Il + 12
= KBy T Bou T 2g)
—— _ 22— —_
Ib = a Il + a12
- — 2= _ o
Ib = Kl(azl a ZOu a Zg)
— _ — D e
Ic = aI1 + a 12
—— _ P N — _ J—
IC Kl(a Zlu aZOu aZZg)
Where: .
K, = f1g
1=




Write equations for phase voltages:

V. =172
a a a
Ve = Ip%p
Vv =172
C Cc C

And line-to-line voltages:

Vab = Va " Vb
= Iaza - Ibe

V. =K |Z.(Z, - Z, - Z,) - % (aB, - a’Z, - a’l,)

ab 11"a " 1u Ou 2qg b lu Ou 2g

Substitute the equivalences of ZOu and 214"
I _ — —— — 2__—..____..__”._.
Vab = (K1/3){Za[za + aZb + a ZC Za Zb ZC Zzg]
= T 2= - 2= 2= 2+ =
- Zb[aZa + a Zb + Zc a Za a Zb a ZC 3a ZZQJJ

— _ - — 2 —_
Vab = (Kl/B)[Za[Zb(a—l) + Zc(a -1) - 322 1

- 2 = 2 2—
+ Zb[Za(a ~-a) + Zc(a -1} + 3a Zzg]}

Set Zb = ZC
= == ,.2_ T 2— = - 2,2
Vab = (Kl/3)[ZZbZa(a 1) BQaZZg + 3a ZZga + Zb (a“=1})1
Let K2 = K1/3
V.. =K. [(22.2 +‘z’2)(a2 -1) + 32 (az'i - 7] (320)
ab 2 b a b 29 b a’ !



Similarly,

<
I

Uﬁl
]

<l

bc

vbc = Ibe - Iczc
e r = 2= _ L.2= . = 2=
K2{Zb(az1 a ZOu 3a ZZg) Zc(a Zlu
R T - SU -
= Kz{Zb(aZa + ZC a Za a Zc 3a Zzg)
-7 (a%°Z. + T - aZ_ - aZ, - 3aZ. )}
c a b a b 2
Again, let 25 = Ec
V. = K, {(Z.%+ 3%, Zb + 27.7.) (a - a%)}
be -~ T2t 4y 2g b ’
Finally,
V. =V. -V
ca c a
V_ =172 -1.732
ca c“c a“a
= K, (Z_(a°Z, - aZ - azZ, ) -2 (Z, -2
T ot2t%e lu Ou 2g a ‘“1lu Ou
=K. {Z (a’Z. + 7, - aZ. - aZ, - 3a7Z. )
2 c a b a b 2
- T (aZ, + a’Z_ -2, - 7_ - 3a%. )}
a b b C 29
With 25 = Ze, the equation reduces to:
—— _ 2 — — _ — ____
ca = KZ{(Zb + ZZaZb)(l a) + BZZg(Za aZb)},

khR kKA A AR

_76_

(321)

(322)



