DDS 568-1

THRUSTER MANEUVERING SYSTEMS

DEPARTMENT OF THE NAVY NAVAL SEA SYSTEMS COMMAND WASHINGTON, DC 20362-5101

DISTRIBUTION AUTHORIZED TO DOD AND DOD CONTRACTORS ONLY; (CRITICAL TECHNOLOGY) (25 NOV 1987). OTHER REQUESTS SHALL BE REFERRED TO NAVAL SEA SYSTEMS COMMAND (SEA 09B2).

DDS 568-1 NOVEMBER, 1987

THRUSTER MANEUVERING SYSTEMS

TABLE OF CONTENTS

Paragraph	<u>Title</u>	<u>Page</u>
568-1-a	References	5
568-1-b	Nomenclature	6
568-1-c	Introduction	9
568-1-d	Description of Thruster Types	10
568-1-e	Design Requirements	14
568-1-f	Environmental Forces and Moments	15
568-1-g	Estimate of Thruster Size	42
568-1-h	Installation Design	52
568-1-i	Sample Calculation	66

LIST OF FIGURES

<u>Figure</u>		Page
1	Typical tunnel thruster installations	11
2	Typical jet thruster installations	11
3	Proportional thrusting type jet thruster	12
4	Typical rotatable thrusters	12
5	Typical retractable tunnel type thruster	13
6	Definition sketch showing positive direction of all forces and moments	17
7	Variation of lateral force, yawing moment, and longitudinal force with angle of yaw for a single 1:83.2 - scale model of EC-2 class Liberty ships; wind speed 100 knots; moment center at center of model	31
8	Variation of lateral force, yawing moment, and longitudinal force with angle of yaw for one 1:73.8 scale model of DD-692 class destroyers at wind speed of 125 knots; the moment center is at the center of the model	32
9	Variation of lateral force, yawing moment and longitudinal force with angle of yaw for a single AO-143 (T5 tanker) wind speed 125 knots, dashed line - laden condition, solid line - unladen condition	33
10	Variation of lateral force, yawing moment and longitudinal force with angle of yaw for a single 1:198 - scale model Forrestal class aircraft - CVA 59; wind speed 126 knots; moment center at center of model	34
11	Definition of angles for computing current relative heading angle, $\boldsymbol{\theta}$	38
12	Thrust effectiveness	50
13	Moment effectiveness	51
14	Thruster output vs. input horsepower	53
15	Tunnel thruster diameter vs. thrust	54

$\frac{\text{LIST OF FIGURES}}{(\text{Continued})}$

<u>Figure</u>		Pag
16	Tunnel thruster tunnel length versus thrust	55
17	Tunnel thruster machinery space area versus thrust	56
18	Jet thruster inboard height versus thrust	57
19	Jet thruster duct length versus thrust	58
20	Jet thruster machinery space area versus thrust	59
21	Typical thruster guard and opening installation	62
22	Installed thrust factors	64
23	Installed torque factors	65
24	Dimensions for T-ARC example problem	74
25	Typical bow thruster with flatbar guards	81

LIST OF TABLES

<u>Table</u>		Page
1	Longitudinal wave force coefficients for MCM and T-ARC	19
2	Transverse wave force coefficients for MCM and T-ARC	20
3	Wave moment coefficients for MCM and T-ARC	21
4	Summary of ship particulars, T-ARC and MCM	23
5	Wave force and moment worksheet	24
6	Wind force and moment coefficients	29
7	Wind force and moment calculation worksheet	35
8	Current force and moment coefficients	37
9	Current force and moment calculation worksheet	40
10	Total force and moment worksheet	41
11	Force balance worksheet for two thrusters, bow and stern	44
12	Force balance worksheet for bow thruster only	46
13	Force balance worksheet for stern thruster only	48

568-1-a. References

- 1. Design Manual Harbor and Coastal Facilities, NAVFAC DM-26, July, 1968.
- 2. Wiegel, R.L., Oceanographical Engineering, Prentice-Hall, 1964.
- 3. Newman, J.N., "Second-order, Slowly-varying Forces on Vessels in Irregular Waves."
- 4. Brix, J.E. and Bussemaker, O., "Lateral Thrusters with Antisuction Tunnels", First North American Tug Convention, 1973.
- 5. English, J.W., "The Design and Performance of Lateral Thrust Units for Ships", Transactions RINA, 1963.
- 6. Taniguchi, K., Watanabe, K., and Kasai, H., "Investigations into the Fundamental Characteristics and Operating Performance of Side Thruster", Mitsubishi Technical Bulletin No. 35, May 1966.
- 7. Stuntz, Jr., G.R. and Taylor, R.J., "Some Aspects of Bow-Thruster Design", Transactions SNAME, Vol. 72, 1964.
- 8. Equations and Coefficients for Simulation of T-ARC 7, NAVSEA Report 3213-79-31, October 1979.
- 9. Made, A.v.d. and Bussemaker, O., "Thrusters for Dynamic Positioning", Lips Propeller Symposium, 1976.

568-1-b. Nomenclature Frontal projected area of ship, ft² Af Side projected area of ship, ft² As Lateral projected area of model ship, ft² Ate Longitudinal projected area of model ship, ft² Ats Longitudinal wind force coefficient C_{XX} Cc^{XX} Longitudinal current force coefficient C_{yy} Lateral wind force coefficient ССАУ Lateral current force coefficient C_{c}^{m} Current moment coefficient Wind moment coefficient C_{m} Cf Force scale factor for model ship Moment scale factor for model ship c_{m} CRPP Controllable Reversible Pitch Propellers D Duct diameter, ft Distance from bow thruster to CG, ft d٦ d2 Distance from stern thruster to CG. ft d₃ Distance of rudders to CG, ft d Distance of propeller shaft off ship centerline, ft F^{W}_{XX} Wind induced longitudinal force, lbs FWVV Wind induced lateral force, lbs F_{ms} Lateral force measured for model ship, lbs F_{me} Longitudinal force measured for model ship, lbs Feyy Environmentally induced force acting to port, lbs Fexx Environmentally induced force acting astern, lbs

FCXX Longitudinal current force, lbs FC_{VV} Lateral current force, lbs FR_x Longitudinal force due to rudders, lbs FR_{v} Lateral force due to rudders, 1bs FF, Longitudinal force due to bow thruster, lbs FF_v Lateral force due to bow thruster, lbs FAx Longitudinal force due to stern thruster, lbs FAv Lateral force due to stern thruster, lbs FP_{XX} Thrust of port propeller, lbs FSVV Thrust of starboard propeller, lbs F^2_{yy} Second-order wave drift force in longitudinal direction, lbs F^2_{VV} Second-order wave drift force in transverse direction, lbs Gravity, ft/sec² g Significant wave height, ft $H_{1/3}$ Thruster opening conical fairing length, ft LE Tunnel length, ft Ls Ship length, ft Model length, ft L+ MPD Maneuvering Propulsion Device Moment measured on model ship, ft-lbs $M_{\rm m}$ Environmentally induced moment to turn ship about CG, ft-lbs Ne_{m} N_{m}^{2} Second order wave moment, ft-lbs N_{m} Wind induced moment, ft-lbs Nc^{m} Current induced moment, ft-lbs Thruster opening fairing radius re

R

Duct radius, ft

 R_{XX} Non-dimensional longitudinal wave force transfer function R_{yy} Non-dimensional lateral wave force transfer function Non-dimensional wave moment transfer function R_{m} Wave spectrum, ft²-sec/radian Se Modal period, sec T_{o} ٧ Speed, ft/sec ٧s Ship speed, ft/sec V_{c} Current speed, ft/sec V_{w} Wind speed, ft/sec V_{XX} X-component of relative water velocity, ft/sec V_{yy} Y-component of relative water velocity, ft/sec χ_{T} Resistance of thruster opening, lbs $180-\psi$, angle of wind relative to ship, degrees α $180-\psi_{\rm C}$, angle of current relative to ship, degrees α_{C} Distance of rudder force off shaft centerline, ft δ Difference frequency, rad/sec Δω Wave length, ft λ_n Non-dimensional wave length τ_n Density, $1b-sec^2/ft^4$ ρ Angle between V_s and V_w , degrees Angle between V_s and V_c , degrees ψ_{C} Absolute frequency, rad/sec ω_n Encounter frequency, rad/sec ω_{e} Current relative heading angle, degrees θ

568-1-c. Introduction

Thrusters are generally installed in Navy ships with severe low speed maneuvering requirements, such as maintaining a specific position at zero or low speed or maintaining a straight track at forward speed.

The purpose of DDS 568-1 is to provide guidance for the selection of the thruster power required to overcome the forces and moments imposed on a ship by wind speed, wave height, and current speed. In addition, this DDS provides guidance for selecting the type of thruster, area and volume requirements and electrical load.

The method of computing thruster force was adapted from a NAVSEA developed computer program "THRSIZ" which evaluates the performance of a thruster of known power. The hand calculation technique presented herein is sufficiently simple to be used when quick but accurate estimates of thruster size are needed to determine space and power requirements.

Guidance is included for selecting the design wind speed, wave height, current speed and ship heading angles to be used if these are not specified in the requirements for a specific ship design. An example illustrating the calculation procedure is presented at the end of the DDS.

It should be noted that active propeller rudders, high lift rudders employing flaps and/or rotors, steerable propeller Kort nozzles, or cycloidal (Voith-Schneider) propulsors may be suitable alternatives to stern thrusters for low speed maneuvering. These devices are not within the scope of ESWBS 568 and are not discussed herein.

568-1-d. Description of Thruster Types

There are three major types of thrusters:

- o Tunnel thrusters
- o Jet thrusters
- o Rotatable thrusters

These three types are each discussed below, and illustrated in Figures 1 through 5.

1. Tunnel Thrusters

Tunnel thrusters are the most economical type of thruster and have as a consequence seen the widest range of application. Their prevalence however, may not make them the best choice for some applications. Tunnel thrusters are not inherently steerable as the jet and rotatable types may be, but provide only lateral thrust. For stationkeeping applications tunnel thrusters have the disadvantage that the main engines must be cycled in order to hold position.

2. Jet Thrusters

Thrusters using axial flow pump output to provide controllable thrust are becoming increasingly popular and are offered in several configurations (depending on such factors as ship design and powering requirements) by at least three manufacturers. Both Schottel and Elliot have variations which take suction from the hull bottom at one side of the thruster housing and discharge back through the hull bottom, via a rotatable discharge deflector or a rotatable elbow, providing 360-degree manueverability. Schottel also manufactures a bow jet that provides thrust only to port and starboard. Omni-Thruster manufactures a unit that discharges port and starboard only, which steers by proportioning thrust between both sides of the hull at the same time either above or below the waterline.

The location of the jet thruster inlet near the keel allows a thruster to be installed in areas where ship motions may create a thruster emergence problem for tunnel type thrusters. If ship motions are such that the thruster inlet duct is emerged then thrust-loss will occur.

The jet type thrusters produce less thrust per horsepower than tunnel or rotatable thrusters. The bottom suction jet type thrusters should be avoided for ships expected to operate in extremely shallow water, as there is a potential for bottom material and debris to be ingested by the pump and cause serious damage to the thruster unit.

3. Rotatable Thrusters

The identifying characteristic of this type is that the screw propeller and pod can be rotated about a vertical axis which is

FIGURE 1 - TYPICAL TUNNEL THRUSTER INSTALLATIONS

FIGURE 2 - TYPICAL JET THRUSTER INSTALLATIONS

FIGURE 3 - PROPORTIONAL THRUSTING TYPE JET THRUSTER

FIGURE 4 - TYPICAL ROTATABLE THRUSTERS

FIGURE 5 - TYPICAL RETRACTABLE TUNNEL TYPE THRUSTER

perpendicular to the propeller rotation axis. Three basic types are: 1) fixed in elevation, 2) pivoting retraction of the vertical shaft about an axis on the level with the prime mover, and 3) telescoping retraction, where the entire assembly slides up and down on shafts to permit extension and retraction through the hull. Propellers may be open or in Kort nozzles.

Rotatable thrusters have the advantage of providing steerability (360-degree swing is available) in a simple mechanical system, and may have the disadvantage of protruding below the ship hull, depending on the ship configuration, thus being subject to damage in shallow water.

568-1-e. Design Requirements

1. Design Environment

Thrusters are sized to produce specific amounts of thrust to counter expected forces and moments produced by wind, waves and current in order to maintain heading or to provide the ship with a specified amount of maneuverability, such as rate of heading change. The thruster design process must therefore begin with the selection of the environment in which the ship is required to maintain the specified maneuverability.

This selection may be made with the aid of the ship requirements document. Manuevering requirements may be stated in these documents in terms of maintaining position or maintaining track in a specified sea state. With this information estimates of the forces and moments acting on the ship can be made. If specific sea state, wind and currents are not given in the document, the assumptions given below may be used to develop preliminary estimates of thruster size.

The design sea state, wind and current must be combined to determine the worst case for ship operation. This will typically not be a single readily apparent condition, but a number of conditions will have to be examined in order to determine which is actually the most severe. It can be assumed that the wind and waves always act from the same direction and that the current may come from any direction. For a good first approximation the worst case may be assumed to be when wind, waves and current all act from the same direction, between ship heading angles of 75 degrees and 105 degrees. It is recommended that analysis be performed at heading angles of 75 degrees, 90 degrees and 105 degrees because the maximum side force typically occurs at 90 degrees and the maximum moment occurs near 75 degrees or 105 degrees. However, care should be taken that the heading angles and assumed environmental conditions are physically meaningful.

In practice, most ship missions requiring the use of a thruster are specified to be carried out in sea states 3 or 4 depending upon the mission and ship size. Unless other guidance is available for the specific ship under consideration, the design wave height shall be assumed to be 6.2

feet (sea state 4) and the design wind speed shall be assumed to be 19 knots (corresponding to sea state 4). The following relationship between wind speed and significant wave height can be used to find the other when only one of the two parameters is specified:

$$V_{W} = (7V H_{1/3} + 0.5 H_{1/3}) (1.6878)$$

where,

 $V_w = wind speed, ft/sec$

 $H_{1/3}$ = significant wave height, ft

Based on data presented in Reference 1 the maximum current in a harbor rarely exceeds 3 knots and ocean currents are typically 1 to 3 knots (Reference 2). Unless other guidance is given for the specific ship under consideration the design current speed can be taken as 1.5 knots, which occurs most frequently.

2. <u>Ship Operation Requirements</u>

Two distinct maneuvering and control capabilities may be required of a thruster. On the one hand the critical maneuvering and control function may be when the ship is dead in the water or at extremely low headway. This type of duty is typical of ships with extended stationkeeping requirements. On the other hand, the critical function for control may be when the ship is operating at a sustained ahead speed for long periods of time following a track or in restricted waterways, such as channels or rivers. For this latter type of design a thruster must consider the interaction of the mainstream and the thruster jet flow, which can compromise the performance of the thruster compared to that of an essentially static condition. A stern thruster is affected by the flow of the main propellers as well. The installed power of the thruster must be sufficient to compensate for the loss in performance when the ship is moving at forward speed. This is described below in para. 568-1-h.

568-1-f. Environmental Forces and Moments

Determining the required thruster size begins with calculation of the forces and moments produced by the wind, wave and current conditions assumed above. These forces and moments are balanced by the forces and moments produced by the ship, that is, the rudders, propellers, and thrusters. The force balance then yields the force required from the thruster. Selection of the thruster size to be installed can be made from the manufacturers data, or from data presented herein.

1. Primary Assumptions

In the following calculation technique, the following assumptions have been made about the environmental conditions:

- o A Bretschneider two parameter $(H_{1/3}, T_0)$ wave spectrum has been assumed.
- o If not explicitly specified, the wind speed is assumed to be related to the significant wave height by the relation given above in para 568-1-e.
- o The wind and the waves act along the same heading with respect to the ship.
- o The coordinate system shown in Figure 6 is assumed for the calculations presented below.

2. Calculation of Wave Forces

The wave forces are calculated by using the method presented in Reference 3. The wave force that is of interest in determining thruster size is the slowly-varying second-order drift force. The first-order wave forces which produce the primary ship motions are of too large a magnitude to be overcome by a practical thruster installation.

Reference 3 uses the steady time-average force in regular waves (transfer function) and the irregular wave spectrum to develop an asymptotic approximation to the mean of the slowly varying second-order force and moment.

The derivation of the equations for calculating the second-order wave force and moment will be omitted here and only the final equations needed for calculating the steady wave drift force and moment will be given.

The wave force is calculated using the following equation:

 $F^2_{XX,yy} = \frac{1}{2}\rho g L_S \Sigma_n 2S_e(\omega_n) \Delta \omega_e R_{XX,yy}(\omega_e,\psi)/(1-(2\omega_n/g)V_S \cos \psi)$ where,

 F^2_{XX} = second-order wave drift force in the longitudinal direction, lbs

 F^2yy = second-order wave drift force in transverse direction, lbs

 ρ = sea water density, 1.9905 lb-sec²/ft⁴

 $g = acceleration due to gravity, ft/sec^2$

 L_S = ship length, ft

 $V_s = ship speed, ft/sec$

FIGURE 6 - DEFINITION SKETCH SHOWING POSITIVE DIRECTION OF ALL FORCES AND MOMENTS

 ψ = wave heading angle with respect to ship heading

 $R_{XX}(\omega_e, \psi)$ = non-dimensional longitudinal wave force transfer function taken from Table 1

 $R_{yy}(\omega_e, \psi)$ = non-dimensional transverse wave force transfer function taken from Table 2

 $S_e(\omega_n) = wave spectrum, ft^2-sec/rad$

= $(483.5(H_{1/3})^2/T_0^4 \omega_n^5)$ exp $(-1944.5/T_0^4 \omega_n^4)$

 $H_{1/3}$ = significant wave height, ft

= 6.5 feet for sea state 4

 $T_0 = modal period, sec$

= 7 sec for sea state 4

 ω_n = wave absolute frequency, rad/sec

= $V 2 \pi g / \tau_n L_s$

 ω_e = wave encounter frequency, rad/sec

 $\omega_n (1-\omega_n V_S (\cos\psi)/g)$

 $\Delta\omega_e$ = difference frequency, rad/sec

 $\tau_n = \lambda_n/L_s$

 λ_n = wave length, ft

The wave moment is calculated using an equation of similar form:

 $N^2_{m} = \frac{1}{2} \rho g L_s^2 \Sigma_n 2S_e(\omega_n) \Delta \omega_e R_m(\omega_e, \psi) / (1 - (2\omega_n/g) V_s \cos \psi)$ where,

 N_{m}^{2} = second-order wave moment, ft-lbs

 $R_m(\omega_e, \psi)$ = non-dimensional wave moment transfer function taken from Table 3

All other variables are as defined above for the wave forces.

The non-dimensional transfer functions $R_{XX}(\omega_e,\,\psi)$, $R_{YY}(\omega_e,\,\psi)$ and $R_m(\omega_e,\,\psi)$ are determined from model tests in regular waves for the MCM ship and estimated analytically for the T-ARC. When model test data for the specific ship under consideration is not available, the data presented in

TABLE 1 LONGITUDINAL WAVE FORCE COEFFICIENTS FOR MCM AND T-ARC

MCM Wave Force Coefficients, $R_{XX}~(\omega_e(\tau_n),\psi)$

ψ	τ _n											
T	0.15	0.30	0.40	0.50	0.75	1.00	1.25	1.50	1.75	2.00		
00*	. 250	.073	.085	.108	.058	.029	.016	.008	.003	.000		
15° 30°	.177	.105	.098	.104	.132	.098	.011	.010	.007	.005		
450 600	.089	.135	.104	.055	.195	.170	.004	.008	.009	.008		
750 900	.025	.051	.038	.012	.103	.038	.000	.003	.004	.002		
105° 120°	015 010	010 004	012 009	020 028	048 062	031 048	013 026	007 010	002 002	001 001		
135° 150°	014 039	006 027	014 023	032 039	062 054	056 050	029 027	011 012	002 003	001 002		
165° 180°**	100 195	069 127	046 094	050 066	039 021	034 009	020 011	011 009	004 006	002 003		

T-ARC Wave Force Coefficients, R_{XX} ($\omega_e(\tau_n), \psi$)

ψ	τn											
,	.170	.222	. 303	.436	. 538	.681	. 889	1.21	1.743	2.151		
00*	.058	. 058	.054	.016	.026	.034	.022	.025	. 044	.041		
150	.056	. 057	.057	.057	.053	.058	.034	.019	.037	.037		
300	.051	.051	.051	.051	.048	.049	.045	.021	.031	.031		
450	.041	.041	.041	.041	.040	.042	.035	.020	.026	.025		
600	.029	.029	.030	.029	.030	.030	.022	.011	.019	.018		
750	.015	.015	.016	.016	.016	.015	.010	.005	.010	.009		
900	074	057	030	.016	.015	.014	.010	.002	.000	000		
105°	010	010	010	009	009	008	005	002	011	011		
1200	018	018	019	019	019	018	013	007	023	021		
1350	026	026	026	026	026	027	021	015	033	030		
1500	032	032	032	032	031	033	028	031	043	039		
165°	036	036	036	036	039	047	031	031	052	046		
1800**	037	036	036	016	078	048	017	039	060	051		

Following Seas Head Seas

TABLE 2 TRANSVERSE WAVE FORCE COEFFICIENTS FOR MCM AND T-ARC

MCM Wave Force Coefficients, $R_{yy}~(\omega_e(\tau_n),\psi)$

ψ	τn											
	0.15	0.30	0.40	0.50	0.75	1.00	1.25	1.50	1.75	2.00		
00* 150 300 450 600 750 900 1050 1200 1350	130 165 220 304 680 -1.432 -1.710 -1.383 415 230 130	087 150 243 389 675 -1.065 -1.777 -1.025 415 227 130	068 140 227 335 463 595 642 567 395 220 125	055 080 123 185 262 318 338 319 277 215 120	022 080 130 167 182 187 190 190 190 187 145	010 015 040 077 128 158 180 173 157 120 060	006 005 003 001 000 000 .001 015 030 040 035	005 005 004 004 003 001 .001 007 015 020 017	004 005 006 007 005 002 .001 005 011 014 012	003 004 004 003 001 .001 004 007 009 007		
165 ⁰ 180 ⁰ **	055 .020	055 .008	050 000	050 010	095 016	028 015	025 013	013 009	008 005	004 001		

T-ARC Wave Force Coefficients, $R_{yy}~(\omega_e(\tau_n),\psi)$

ψ	τn											
	.170	. 222	.303	.436	. 538	.681	. 889	1.21	1.743	2.151		
00* 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800**	.000 212 411 581 714 804 894 797 711 580 410 212	.000 215 411 584 713 795 857 901 715 582 411 214	.000 098 412 583 721 825 928 822 721 583 414 099	.000 011 336 590 713 964 -1.162 885 737 603 386 026	.000 013 143 495 786 -1.181 -1.153 949 775 561 148 025	.000 001 035 210 510 630 482 485 514 271 058 008	.000 003 021 095 209 261 236 227 201 112 035 007	.000 012 028 058 096 126 137 130 106 071 040 018	.000 015 030 046 062 075 081 080 071 056 038 020	.000 013 025 036 046 054 058 057 051 042 030 016		

Following Seas Head Seas

TABLE 3
WAVE MOMENT COEFFICIENTS FOR MCM AND T-ARC

MCM Wave Moment Coefficients, R_m $(\omega_e(\tau_n),\psi)$

ψ	τn										
*	0.15	0.30	0.40	0.50	0.75	1.00	1.25	1.50	1.75	2.00	
0°* 15° 30° 45° 60° 75° 90° 105° 120° 135°	045 045 046 049 054 074 099 078 031 009	019 008 000 .006 .008 .011 .011 .007 003	012 007 003 .001 .003 .004 .003 000 005	008 007 007 008 009 011 014 013 010	004 008 013 022 033 054 083 055 006	000 005 011 020 032 051 078 041 004	.005 .004 006 007 006 005 004 005 006	.002 .002 003 004 003 002 001 001	.001 000 002 002 002 001 .000 002 006	000 001 001 001 001 001 .000 .002 .004	
150°	009	007	005	001	.001	.002	005	.002	.006	.004	
165° 180°**	011 015	007 004	003 .001	.003	001 004	.001	.005 .007	.003 .004	.003 .001	.002 .000	

T-ARC Wave Moment Coefficients, R_m ($\omega_e(\tau_n)$, ψ)

ψ		τn												
·	.170	. 222	.303	.436	. 538	.681	.889	1.21	1.743	2.151				
*														
00*	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000				
150	017	011	.003	.010	.014	.012	.007	.006	.004	.003				
300	034	027	.001	.036	.042	.019	014	.016	.010	.007				
450	020	063	046	.032	.033	.019	.039	.036	.019	.013				
60°	041	097	059	060	004	.091	.102	.062	.026	.015				
750	.021	046	119	.023	.184	.201	.127	.058	.021	.012				
900	047	109	120	045	000	.015	.013	.007	.004	.003				
105°	.010	059	043	086	200	168	097	042	013	007				
1200	023	099	089	016	024	081	078	045	017	010				
1350	034	_ 079	045	047	040	027	031	024	012	007				
1500	043	039	043	045	027	020	014	009	005	003				
165°	028	047	035	013	005	008	007	003	001	001				
1800**	.000	. 000	.000	.000	.000	.000	.000	.000	.000	.000				

^{*} Following Seas ** Head Seas

Tables 1, 2 and 3 can be used by selecting the ten values of $R_{XX}(\omega_e,\,\psi),$ $R_{yy}(\omega_e,\,\psi),$ and $R_m(\omega_e,\,\psi)$ for the corresponding heading angle, $\psi.$ Data is presented for two different hull forms: for the T-ARC representing a moderate form ship and for the MCM representing a slender ship. The ship characteristics are given in Table 4.

The summation over n in the force and moment equations is carried out for a range of wave length to ship length ratios, $\tau_n = \lambda_n/L_s$. The following ten values of \mathcal{T}_n are used in the force and moment calculation when the MCM data is used: .15, .30, .40, .50, .75, 1.00, 1.25, 1.50, 1.75 and 2.00. For the T-ARC data the values of τ_n are: .170, .222, .303, .436, .538, .681, .889, 1.21, 1.743 and 2.151. The calculations have been put into a tabular format in Table 5 to simplify the procedure.

An example calculation of the wave forces and moments is presented in para. 568-1-i.

TABLE 4

SUMMARY OF SHIP PARTICULARS, T-ARC AND MCM

-	МСМ	T-ARC
LBP, ft Beam, ft Draft, ft Displacement, L. Tons Block Coefficient Prismatic Coefficient No. Screws V/V LBP	240.0 43.9 11.8 1,725 .484 .576 2	464.0 73.0 24.0 14,183 .610 .648 2 .696

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	n ·	$\tau_n = \frac{\lambda_n}{L_s}$	$\omega_{n} = \sqrt{\frac{2\pi g}{L_{s}\tau_{n}}}$	$s = \frac{\omega_n}{g} V_s \cos \psi$	$\omega_{\mathbf{e}} = \omega_{\mathbf{n}}(1-\mathbf{s})$	(1-2s)	T ⁴ 4 ο α	$ \begin{pmatrix} -1944.5 \\ T_0^4 \omega_n^4 \end{pmatrix} $
Į.								
	1		W.					
	2				,			
	3			METER A Black Andrews Advances on the Control of th	uma sulli di dictivizza di la distili di ci di di di mangini mengangangangan di ci d		Anna Anna an Bhilinnia dhan dhi ya kuma na kuma an	
	4				ner en			
	5							
	6			Date de propriete en en el Calde de Ca La calde de	hermine der zur Killenger der 1964 bei der Gereiten zu der Anterstellen der der Anterstelle der Zeit der Stellen			
	7	manada and a da da ang an ang ang ang ang ang ang ang ang			and the first Advisor de skeller var glev de see alle til att at skelle i step av de kalende han en green en g		MATERIAL PROPERTY AND	
	8							AND THE COURT OF T
	9				Mari Productiva (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (19			
1	.0		_					

$$T_0 = MODAL PERIOD (sec) =$$

$$g = 32.2 \text{ ft/sec}^2 =$$

$$H_{1/3}$$
 = SIGNIFICANT WAVE HEIGHT (ft) =

$$\rho g = 64 \text{ lbs/ft}^3 \text{ SALT WATER}$$

$$\rho g = 62.4 \text{ lbs/ft}^3 \text{ FRESH WATER}$$

TABLE 5 - WAVE FORCE AND MOMENT WORKSHEET (CONT'D)

(1)	(5)	(9)	(10)	(11)	(12)
n	ω e	$S_{e}(\omega_{n}) = \frac{1}{\omega_{n}} \frac{483.5(H_{1/3})^{2}}{T_{o}^{4} U_{n}^{4}} e^{\frac{-1944.5}{T_{o}^{4} U_{n}^{4}}}$ $= \frac{483.5(H_{1/3})^{2} \times (8)}{(3) \times (7)}$	$\omega_{\mathbf{p}} = \frac{1}{2}(\omega_{\mathbf{p}} + \omega_{\mathbf{p}})$ mean n+1	w - w mean mean n+1	ω _e - ω _e 1 2 ω _e - ω _e 9 10
1					
2					
3					
4					
5					
6					
7	A SECTION OF THE PROPERTY OF T				
8					
9					
10					

TABLE 5 - WAVE FORCE AND MOMENT WORKSHEET (CONT'D)

g-co								
	(1)	(5)	(13)	(14)	(15)	(16)	(17)	(18)
A THE RESIDENCE OF THE PROPERTY OF THE PROPERT	n	ω _e	Δω e (11)+(12)	$\frac{2S_{e}(\omega_{n}) \Delta \omega_{e}}{(1-2s)}$ $= \frac{2x(9)x(13)}{(6)}$	R _{xx} (ω _e)	R _{yy} (ω _e)	R _m (ω _e)	LONGITUDINAL WAVE FORCE $ \frac{2S_{e}(\omega_{n})}{(1-2s)} \Delta \omega_{e} R_{xx}(\omega_{e}) $ $= (14)x(15)$
	1							
	2	AND THE RESERVE OF THE PROPERTY OF THE PROPERT			eministrativas kaikas kaik T	Annual Control of the		
	3				NO METRO PETRO DE CALCARTE DA SERVICIO DE SERVICIO DE SERVICIO DE CALCARTE DE CALCARTE DE CALCARTE DE CALCARTE	enter er enter de la		,
	4				nga makabana da sang makaban da sana da	gentaat verbedunden samme die genoorde verbende die deel verben verbende die deel verbende verbende gentaar de	Mark Encourage with \$455 felt-All transfers constructing (1979) and the second	
26	5				and the second of the second o	and are of Lorenze to Antiques ago anglesion and General Anti-order designation and ago angles and	And the second s	
	6				APPANEET PROTEST CONTRACTOR CONTR			
	7				• COMMUNICATION SERVICE COMMUNICATION COMMUNICATION COMMUNICATION COMMUNICATION COMMUNICATION COMMUNICATION CO	A STATE OF THE STA		
	8			,	MANAKAT MENGANG PERSENTAN KANCALAN MENGANJAN PERSENTAN PERSENTAN PERSENTAN PERSENTAN PERSENTAN PERSENTAN PERSE	and the state of t		•
	9					entities with a complete complete and the complete comple		
	10			,	and the second	e en dice con a se estado de electron de estado en estado en entre en entre en entre en entre en entre en entre		

(21) Σ =

.

TABLE 5 - WAVE FORCE AND MOMENT WORKSHEET (CONT'D)

_			(0011, 0)
(1)	(5)	(19) TRANSVERSE WAVE FORCE	(20) WAVE MOMENT
n	ω e	$\frac{2S_{e}(\omega_{n})}{(1-2s)} \Delta \omega_{e} R_{yy}(\omega_{e})$ = (14)x(16)	$\frac{2S_{e}(\omega_{n})\Delta \omega_{e}}{(1-2s)} R_{m}(\omega_{e})$ $= (14)x(17)$
1		(2.)//(20)	(21//(2/)
1			
2			
3			
4			
5			
6	areaster consistent des la spotificia si un photo destromana accessoscepts qui dispare comprete di propriede		
7			
8			
9		·	
10			
-	c .	Σ = (22)	(23)

F_{xx}^2	-	¹₂pg	X	Ls	X	(21)
F_{yy}^2	===	iapg	X	Ls	Х	(22)
$N_{\rm m}^2$	=	ι _ž ρg	Х	L'2	X	(23)

3. Calculation of Wind Forces and Moments

Wind induced forces and moments are calculated using the equations given below and the empirical coefficients presented in Table 6.

$$F_{XX}^{W}(\psi) = \frac{1}{2} A_f V_{W}^{2} C_{XX} (\psi)$$

$$F^{W}_{VV}(\psi) = \frac{1}{2} A_{S} V_{W}^{2} C_{VV}(\psi)$$

$$N_m^w(\psi) = \frac{1}{2} A_S V_w^2 L_S C_m(\psi)$$

where,

 $F_{XX}^{W}(\psi)$ = Longitudinal wind force, lbs

 $F_{VV}^{W}(\psi)$ = Transverse wind force, lbs

 $N_{m}^{W}(\psi)$ = Wind moment, ft-lbs

 C_{XX} (ψ) = Longitudinal wind force coefficient taken from Table 6

 C_{yy} (ψ) = Transverse wind force coefficient taken from Table 6

 C_m (ψ) = Wind moment coefficient taken from Table 6

A_s = Longitudinal projected area of ship hull and superstructure above waterline, ft²

Af = Transverse projected area of ship hull and superstructure above waterline, ft²

 $V_w = Wind speed, ft/sec$

 ρ = Density of air, .0023602 lb-sec²/ft⁴

 ψ = Angle from which wind is acting relative to ship heading

The coefficients presented in Table 6 are based on model experiments with the T-ARC. This data may be used if similar data for the ship under consideration is not available.

For cases where the wind speed is not specified it can be related to the significant wave height by the equation given in para. 568-1-e.

Reference 1 contains wind force and moment data based on model tests for several Navy surface ships (CVA 59, DD 692, AO 143 and EC 2 class Liberty ship). This data is not in the same format as required by the above equations but can be modified by the following:

$$C_{XX}(\psi) = 2c_f F_{ms}/(\rho A_{ts})$$

TABLE 6
WIND FORCE AND MOMENT COEFFICIENTS

Degrees	Ċ _{xx}	Суу	C _m
0*	.647	0.0	0.0000
15	.718	250	.0325
30	. 557	545	.0670
45	. 214	768	. 0885
60	109	850	.0775
75	.048	840	.0300
90	014	883	0020
105	062	875	0375
120	190	818	0640
135	262	810	0925
150	652	520	0695
165	775	233	0370
180**	723	0.000	0.0000

^{*} Following Wind ** Head Wind

 $C_{yy}(\psi) = 2c_f F_{me}/(\rho A_{te})$ $C_m(\psi) = 2c_m M_m/(\rho A_{ts} L_t)$ where,

 F_{ms} = Lateral force measured for model ship, 1bs

 F_{me} = Longitudinal force measured for model ship, lbs

 M_m = Moment measured for model ship, ft-lbs

 A_{ts} = Longitudinal area for model ship, ft^2

 A_{te} = Transverse area for model ship, ft^2

 L_t = Length of model ship, feet

cf = Force scale factor for model ship

Cm = Moment scale factor for model ship

All of the above data can be found on the model test curves presented in Figures 7 through 10.

A calculation worksheet is presented in Table 7. An example calculation is presented in para. 568-1-i.

FIGURE 7 - VARIATION OF LATERAL FORCE, YAWING MOMENT, AND LONGITUDINAL FORCE WITH ANGLE OF YAW FOR A SINGLE 1:83.2-SCALE MODEL OF EC-2 CLASS LIBERTY SHIPS; WIND SPEED 100 KNOTS; MOMENT CENTER AT CENTER OF MODEL

FIGURE 8 - VARIATION OF LATERAL FORCE, YAWING MOMENT, AND LONGITUDINAL FORCE WITH ANGLE OF YAW FOR ONE 1:73.8 SCALE MODEL OF DD-692 CLASS DESTROYERS AT WIND SPEED OF 125 KNOTS; THE MOMENT CENTER IS AT THE CENTER OF THE MODEL.

FIGURE 9 - VARIATION OF LATERAL FORCE, YAWING MOMENT AND LONGITUDINAL FORCE WITH ANGLE OF YAW FOR A SINGLE A0-143(T5 TANKER) WIND SPEED 125 KNOTS, DASHED LINE-LADEN CONDITION, SOLID LINE-UNLADEN CONDITION.

FIGURE 10 - VARIATION OF LATERAL FORCE, YAWING MOMENT AND LONGITUDINAL FORCE WITH ANGLE OF YAW FOR A SINGLE 1:198-SCALE MODEL FORRESTAL CLASS AIRCRAFT-CVA 59; WIND SPEED 126 KNOTS; MOMENT CENTER AT CENTER OF MODEL.

TABLE 7 - WIND FORCE AND MOMENT CALCULATION WORKSHEET

				F ^w _{XX}	F ^w yy	N ^w m
(1)	Pair	Density of air	lb-sec²/ft⁴	.0023602	.0023602	.0023602
(2)	As	Long proj area	ft ²	N.A.		
(3)	Af	Trans proj area	ft ²		N.A.	N.A.
(4)	V _w	Wind Speed	ft/sec			
(5)	Ψ	Heading Angle	degrees			
(6)	C _{XX} (Ψ)	From Table 6	N.A.		N.A.	N.A.
(7)	C _{yy} (Ψ)	From Table 6	N.A.	N.A.		N.A.
(8)	C _m (Ψ)	From Table 6	N.A.	N.A.	N.A.	
(9)	L _S	Ship length	ft			
(10)	\^M 5	(4)x(4)	ft²/sec²			
(11)	0.5ρV _w ²	0.5(1)(10)	lb/ft²			VIII
(12)	F ^w xx	(11)(3)(6)	1b		N.A.	N.A.
(13)	F ^w yy	(11)(2)(7)	1b	N.A.		N.A.
(14)	N ^w m	(11)(2)(9)(8)	ft-1b	N.A.	N.A.	

4. Calculation of Current Forces

The general form of the current force and moment equation is:

$$\begin{bmatrix} F^{c}_{xx} \\ F^{c}_{yy} \\ N^{c}_{m} \end{bmatrix} = 0.5\rho L_{s}^{2} (V_{xx}^{2} + V_{yy}^{2}) \begin{bmatrix} C^{c}_{xx}(\theta) \\ C^{c}_{yy}(\theta) \\ L_{s}C^{c}_{m}(\theta) \end{bmatrix}$$

where,

FC_{XX} = Longitudinal current force, lbs

 F^{C}_{yy} = Transverse current force, lbs

NC_m = Current moment, ft-lbs

 $C^{C}_{XX}(\theta)$ = Longitudinal current force coefficient taken from Table 8

 $C^{C}_{yy}(\theta)$ = Transverse current force coefficient taken from Table 8

 $C_{m}^{c}(\theta)$ = Current moment coefficient taken from Table 8

 L_s = Ship length, feet

 $V_{XX} = V_S - V_C \cos \psi = V_S + V_C \cos \alpha$

 $V_{yy} = V_c \sin \alpha$

 V_s = Ship forward speed, ft/sec

 V_C = Current speed, ft/sec

 ψ = Absolute heading angle of current relative to ship heading (angle between the two vectors representing velocities)

 $\alpha = \pi - \psi$

 $\theta = \tan^{-1} (V_{yy}/V_{xx}), V_{xx} > 0$

= π + tan⁻¹ (V_{yy}/V_{xx}), $V_{xx} < 0$

 $= \pi/2, V_{XX} = 0$

and θ is measured clockwise as shown in Figure 11.

TABLE 8 CURRENT FORCE AND MOMENT COEFFICIENTS

	T-ARC			МСМ		
Degrees	CcXX	Сс ^{ЛЛ}	Cc ^m	Cc ^{XX}	Сс ^{уу}	Cc ^m
180* 165 150 135 120 105 90 75 60 45 30 15 0**	.00195 .00168 .00135 .00097 .00048 00030 00168 00212 00226 00231 00224 00203 00173	0.0000 0070 0158 0258 0350 0411 0435 0408 0333 0226 0188 0065 0.0000	0.00000 .00127 .00211 .00243 .00222 .00151 .00040 00116 00237 00290 00255 00156 0.00000	.00300 .00256 .00207 .00150 .00087 .00000 00091 00116 00134 00146 00156 00162	0020 0105 0197 0275 0339 0383 0405 0385 0341 0279 0198 0105 0010	0.00000 .00055 .00101 .00135 .00150 .00130 .00040 00253 00415 00470 00422 00280 0.00000

Following Current Head Current

FIGURE 11 - DEFINITION OF ANGLES FOR COMPUTING CURRENT RELATIVE HEADING ANGLE, $\boldsymbol{\theta}$.

Current and moment force coefficients are presented in Table 8 which are based on model tests of the T-ARC and MCM. This data should be used when similar data for the ship under consideration is not available.

A current force and moment calculation worksheet is included as Table 9. A sample calculation of the current induced force and moment is included in the sample problem in para. 568-1-i.

5. Total Force and Moment

The total external forces and moment due to wind, waves and current is obtained by adding the components calculated above:

$$F^{e}_{XX} = F^{2}_{XX} + F^{w}_{XX} + F^{c}_{XX}$$

$$F^{e}_{yy} = F^{2}_{yy} + F^{w}_{yy} + F^{c}_{yy}$$

$$N^{e}_{m} = N^{2}_{m} + N^{w}_{m} + N^{c}_{m}$$

Table 10 is provided to record the calculated values of each component of the external forces and moments and to find the totals.

TABLE 9

CURRENT FORCE AND MOMENT CALCULATION WORKSHEET

				F ^C XX	F ^C yy	N ^C m
(1)	ρ	Density water	1b-sec ² /ft ⁴	1.9905	1.9905	1.9905
(2)	L _S	Ship length	feet			
(3)	V _S	Ship speed	feet/sec			
(4)	V _C	Current speed	feet/sec			
(5)	ψ	Heading angle	degrees			
(6)	V _{xx}	(3) - (4) cos ψ	feet/sec			
(7)	V _{yy}	(4) sin ψ	feet/sec			
(8)	θ	If (6) > 0.0; tan ⁻¹ ((7)/(6))	degrees			
		If (6) < 0.0; 180+tan ⁻¹ ((7)/(6))	degrees			
		If (6) = 0.0;	degrees	180	180	180
(9)	Cc ^{XX} (θ)	from Table 8	N.A.		N.A.	N.A.
(10)	Cc ^{λλ} (θ)	from Table 8	N.A.	N.A.		N.A.
(11)	Cc ^m (θ)	from Table 8	N.A.	N.A.	N.A.	
(12)	$V_{xx}^2 + V_{yy}^2$	$(6)^2 + (7)^2$	feet ² /sec ²			
(13)	.5pL _s ²	.5(1)(2)(2)	1b-sec ² /ft ²			
(14)	$.5\rho L_s^2 \times (V_{xx}^2 + V_{yy}^2)$	(12)(13)	1bs			
(15)	Lc ^{XX}	(14)(9)	lbs		N.A.	N.A.
(16)	Fc ^{yy}	(14)(10)	lbs	N.A.		N.A.
(17)	Ис ^ш	(14)(2)(11)	ft-lbs	N.A.	N.A.	

TABLE 10

TOTAL FORCE AND MOMENT WORKSHEET

(1)	F ² xx	From Table 5	lbs
(2)	F ² yy	From Table 5	lbs
(3)	$N^2_{\rm m}$	From Table 5	ft-lbs
(4)	F ^W XX	From Table 7	lbs
(5)	F ^w yy	From Table 7	lbs
(6)	NΨm	From Table 7	ft-lbs
(7)	FcXX	From Table 9	lbs .
(8)	Fcyy	From Table 9	lbs
(9)	Ис ^ш	From Table 9	ft-lbs
(10)	Fе ^{XX}	(1)+(4)+(7)	lbs
(11)	F ^e yy	(2)+(5)+(8)	lbs
(12)	Nem	(3)+(6)+(9)	ft-lbs

568-1-g. Estimate of Thruster Size

The thruster force can be computed based on a static solution of the force and moment equations. Solutions are presented for the case of both a bow and stern thruster, bow thruster only and stern thruster only. The general equations are presented followed by individual solutions for each case.

Consider the ship as a rigid body with a speed V_S along the centerline. Assume two propellers, two rudders, a bow and a stern thruster. Let the environmental loads as calculated above be applied at the C.G. of the body. Let the propeller thrusts act through the shafts along the positive x axis, any rudder loads through the corresponding center of pressure of the rudders (F^R_X, F^R_y) . Assume the thrusters produce (F^F_X, F^F_y) and (F^A_X, F^A_y) forces as shown in Figure 6.

The motion is assumed steady (no rotations or accelerations). For equilibrium of forces and moments the following equations result:

$$F^{p}_{xx} + F^{s}_{xx} + F^{e}_{xx} - (F^{F}_{x} + F^{A}_{x}) - 2F^{R}_{x} = 0$$

 $F^{F}_{y} + F^{A}_{y} + 2F^{R}_{y} + F^{e}_{yy} = 0$
 $(F^{F}_{y}d_{1} - F^{A}_{y}d_{2}) + (F^{p}_{xx} - F^{s}_{xx})d + N^{e}_{m} - 2F^{R}_{y}d_{3} = 0$

The last equation can be rewritten as:

$$(F^{F}_{y}d_{1} - F^{A}_{y}d_{2}) = -N^{e}_{m} - N^{PR} + 2F^{R}_{y}d_{3}$$

= $-N^{e}_{m} - N^{PR} + N^{R}_{m}$

where,

$$N^{PR} = (F_{XX} - F_{XX})d$$

$$N_m = 2F_yd_3$$

1. Both Bow and Stern Thrusters

Solving for
$$F^{F}_{y}$$
, F^{A}_{y}

$$F^{F}_{y} = \frac{1}{(d_{1}+d_{2})} \begin{bmatrix} (-N^{e}_{m} - N^{PR} + 2F^{R}_{y} d_{3}) + d_{2} (-F^{e}_{yy} - 2F^{R}_{y}) \\ -(-N^{e}_{m} - N^{PR} + 2F^{R}_{y} d_{3}) + d_{1} (-F^{e}_{yy} - 2F^{R}_{y}) \end{bmatrix}$$

which cannot be explicitly solved without any assumptions.

In the absence of other information we can assume a value for $^{FR}{\rm y}$ within the capability of the rudder and that $^{FR}{\rm _X},~^{FF}{\rm _X},~^{FA}{\rm _X}$ are all zero, which means that:

$$FP_{XX} = FS_{XX} = \frac{1}{2}(Fe_{XX} + (FF_{X} + FA_{X}) + 2FR_{X})$$

or $FP_{XX} = FS_{XX} = \frac{1}{2}Fe_{XX}$

By definition $N^{PR} = (FP_{XX} - FS_{XX})d_1$, i.e., $N^{PR} = 0$ as assumed.

thus,
$$F_y^F = -N_m^e - d_2 F_{yy}^e + (d_3 - d_2) 2 F_y^R$$

$$F_y^A = N_m^e - d_1 F_{yy}^e - (d_3 + d_1) 2 F_y^R$$

A worksheet is provided as Table 11.

TABLE 11

FORCE BALANCE WORKSHEET FOR TWO THRUSTERS, BOW AND STERN

(1)	F ^e yy	(11) from Table 10	
(2)	N ^e m	(12) from Table 10	
(3)	d ₁	Distance from bow thruster to CG in feet	
(4)	d ₂	Distance from stern thruster to CG in feet	
(5)	d ₁ +d ₂	(3)+(4)	
(6)	d3	Distance from rudder to CG in feet	
(7)	FRy	Rudder force, lbs.	
(8)	F ^F y	- <u>(2)-(4)(1)+((6)-(4))2(7)</u> , Bow Thruster (5) Force, 1bs	
(9)	F ^A y	+(2)-(3)(1)-((6)+(3))2(7), Stern Thruster (5) Force, 1bs	

2. Bow Thruster Only

Taking moments about the C.G.:

$$N_{m}^{e} + F_{y}^{f} d_{1} - 2F_{y}^{g} d_{3} = 0$$

or
$$F_y = - (N_m^e - 2F_y^R d_3)/d_1$$

Summing the forces in the y-direction:

$$F^F_y + 2F^R_y + F^e_y = 0$$

or
$$2F^R_y = -F^E_{yy} - F^F_y$$

Substituting and solving for F_{y}^{F} :

$$F_y = - (F_{yy}^e d_3 + N_m^e)/(d_1 + d_3)$$

Since $F^e{}_{yy},\,N^e{}_m,\,d_2$ and d_3 are known, we can find $F^F{}_y$ and then get $2F^R{}_y$ by the equation:

$$2F^Ry = -F^eyy - F^Fy$$

A worksheet for the above calculation is provided as Table 12.

TABLE 12

FORCE BALANCE WORKSHEET FOR BOW THRUSTER ONLY

(1)	F ^e yy	(11) from Table 10	
(2)	N ^e m	(12) from Table 10	
(3)	d ₁	Bow thruster lever, feet	
(4)	d3	Rudder lever, feet	
(5)	d ₁ +d ₃	(3)+(4)	
(6)	F ^F y	$-\frac{(1)(4)+(2)}{(5)}$, Bow Thruster Force, 1bs	
(7)	2F ^R y	-(6)-(1), Rudder Force, 1bs	

3. Stern Thruster Only

Taking moments about the C.G.:

$$N_{m}^{e} - F_{y}^{A} d_{2} - 2F_{y}^{R} d_{3} = 0$$

or
$$F_y^A = - (N_m^A - 2F_y^A d_3)/(d_1)$$

Summing the forces in the y-direction:

$$F^{A}_{y} + 2F^{R}_{y} + F^{e}_{y} = 0$$

or
$$2F^R_y = -F^e_{yy} - F^A_y$$

Substituting and solving for F_{V}^{A} :

$$F^{A}_{y} = - (F^{e}_{yy} d_{3} + N^{e}_{m})/(d_{3} - d_{2})$$

Since $F^e{}_{yy}, \; N^e{}_m, \; d_2$ and d_3 are known we can find $2F^R{}_y$ and then get $F^A{}_y$ by the equation:

$$2F^{R}y = -F^{e}yy - F^{A}y$$

A worksheet for the above calculation is provided as Table 13.

TABLE 13
FORCE BALANCE WORKSHEET FOR STERN THRUSTER ONLY

(1)	F ^e yy	(11) from Table 10
(2)	N ^e m	(12) from Table 10
(3)	d ₂	Stern thruster lever, feet
(4)	d3	Rudder lever, feet
(5)	d3-d2	(4)-(3)
(6)	F ^A y	$\frac{(1)(4)+(2)}{(5)}$, Stern Thruster Force, lbs
(7)	2F ^R y	-(1)-(6), Rudder Force, 1bs

4. Thruster Performance Degradation Due to Ship Speed

If the duty cycle of the thruster includes operation while the ship is making speed ahead or astern, then it is necessary to account for the degrading effects of ship speed on thruster performance. The speed of the ship will reduce the effective force and moment of the thruster by an effectiveness factor. The effectiveness factor is reported in percent and is defined as the thruster effective force or moment divided by the thruster static force or moment. To produce estimates of the thruster effectiveness factor for ships operating at speed, Figures 12 and 13 (References 4-6) are provided.

To use Figures 12 and 13 to estimate the effectiveness, enter the lower part of the figure with the speed ratio, shown at the bottom of the figure, and read the effectiveness factor from the center scale.

When using these figures to estimate the effectiveness factor of stern thrusters, the speed that is used is not simply the vessel speed, but must be increased by an amount equal to the propeller slip and given the opposite sign, i.e. a ship making 8 knots with a slip ratio of 1.25 would be figured on the basis of minus 10-knots speed.

The previously calculated thrust levels, F^Fy and F^Ay are divided by the smaller of the corresponding force or moment effectiveness to get the thrust at speed.

FIGURE 12 - THRUST EFFECTIVENESS FACTOR

FIGURE 13 - MOMENT EFFECTIVENESS FACTOR

568-1-h. Installation Design

For optimum performance, the thruster configuration must meet certain minimum hydrodynamic constraints and the constraints of the hull shape, in terms of the area and volume available for the thruster installation. While thruster weight is also required, it varies considerably due to type of thruster and prime mover and must be considered on a case basis.

The thruster opening must also be designed to have minimum adverse impact on the ahead resistance of the ship in transit. However, in practice the resistance penalty that must be paid for the thruster is accepted and the thruster is located for maximum effectiveness. The location for maximum effectiveness is the subject of this section.

1. Thruster Specific Power

Thruster performance is most frequently reported in terms of thruster specific power, that is, the pounds of thrust produced by a single horsepower of input energy. This value varies with the type of thruster and with the size of thruster, as the larger thrusters are slightly less efficient than the smaller ones, due primarily to increased gear train and ancillary systems losses.

Figure 14 is a plot of thruster output versus input horsepower for a wide range of thruster types and sizes. The lines of constant specific power are presented for easing the task of interpolating between thrusters. A preliminary knowledge of thruster output, as determined in accordance with para. 568-1-g, may be used in conjunction with this figure to make fairly accurate estimates of the size of prime mover required for the thruster.

2. <u>Area/Volume Requirements</u>

As there are a variety of thruster types, manufacturers and prime movers, it is impossible to set out a rigorous technique for determining the amount of space a particular thruster installation requires. The actual space requirements depend on particulars of the thruster that are only available after a specific manufacturer has been selected. It is possible however, to produce working estimates of the space requirements of various thruster types based on the thruster output. This data has been compiled from manufacturers data and arrangement drawings for recent ship designs, and is presented in Figures 15 through 20.

Figures 15, 16 and 17 give the tunnel diameter, tunnel length, and machinery space area, respectively, for tunnel type thrusters. Figures 18, 19 and 20 give the inboard height, duct length, and machinery space area respectively for jet type thrusters.

The values given for tunnel type thrusters may be used for retractable rotatable type thrusters, as depicted in Figure 5.

D TUNNEL THRUSTERS, SEE FIG. 1.

O ROTATARIE NOZZIE THRUSTERS. SE

O ROTATABLE NOZZLE THRUSTERS, SEE FIG. 5.

△ JET THRUSTERS, SEE FIG. 2.

FIGURE 14 - THRUSTER OUTPUT VS. INPUT HORSEPOWER

FIGURE 15 - TUNNEL THRUSTER TUNNEL DIAMETER vs. THRUST

FIGURE 16 - TUNNEL THRUSTER TUNNEL LENGTH vs. THRUST

FIGURE 17 - TUNNEL THRUSTER MACHINERY SPACE AREA vs. THRUST

FIGURE 18 - JET THRUSTER INBOARD HEIGHT vs. THRUST

FIGURE 19 - JET THRUSTER DUCT LENGTH vs. THRUST

FIGURE 20 - JET THRUSTER MACHINERY SPACE AREA vs. THRUST

To obtain this data from the figures, enter the figure with the thruster output force, along the horizontal axis, and read the data on the vertical scale at the left.

Note that the sizes so obtained are averages, and thrusters may most likely be obtained both larger and smaller than the sizes estimated. The purpose of the preliminary estimate is to aid in the determination of thruster location requirements, and to assist in the allocation of ship space to equipment subsystems.

With jet type thrusters suction may be taken either directly through the ships hull or from a sea chest. In this latter case the volume and area of the sea chest must be added to the area and volume of the thruster.

For diesel prime mover installations additional area and volume is required for the diesel and its intakes and uptakes.

3. Restraints on Thruster Location

Longitudinal Restraints. - The thruster should be located as far from the ship LCG as is feasible. This means locating the bow thruster as near the FP as possible. Thrusters should not be located forward of station 2, however, as hull curvature at the forward end of the waterplane can adversely affect thruster performance, particularly as related to added resistance. The narrowing of the hull forward may also severely restrict the tunnel length. For tunnel type thrusters the tunnel length should not be less than 1.0 duct diameter, and should preferably be nearer 2.0 duct diameters.

For transversely mounted jet type thrusters the requirements for width are greater than for the proportional thrusting type jet, and in fact it is preferable to mount the directional jet thrusters with the inlet and outlet aperatures on the same longitudinal line.

Vertical Restraints. - The thruster must be located far enough below the waterline to insure adequate submersion at the inlet through a wide range of ship motions. For typical installations this means that the centerline of the inlet duct should not be less than 1.0 diameter below the calm water plane. For jet type thrusters with their intakes below the hull, care must be taken that they do not suck bottom material into the jet. Similarly, the retractable rotatable nozzles must not extend so far below the waterline that they touch the bottom.

In cases where thrusters are expected to operate in severe seaways, the depth of immersion of the inlet must be increased above the 1.0 diameter stated above to insure freedom from thruster emergence. In this case a seakeeping analysis should be performed to establish the minimum submersion required, based on design sea state, and the allowable limit on thruster emergences/hour (30). A thruster tunnel emergence occurs when

a point 1/4-tunnel diameter above the top of the tunnel emerges from the water.

4. Electrical Power Requirements

Electrical load requirements will depend on the type of thruster selected and the type of prime mover used to power the thruster. Thus, if the thruster will be totally electrically powered, then the electrical power requirements may be estimated from a knowledge of the horsepower requirements of the unit. If the thruster will be operated by an independent diesel engine, then the only electrical load requirement will be the control and sensing system, and that electrical power required to start and run the engine.

5. Effect of Thruster on Ship Resistance

The presence of the thruster openings in the ship will have an adverse effect on the resistance of the ship. A simple estimate for the resistance of the thruster opening is obtained from the following formula of Reference 7:

 $X_T = 0.07 \frac{\rho}{2} \pi R^2 V^2$

where,

 X_T = resistance of thruster opening, lbs

R = thruster opening radius, feet

V = ship speed, ft/sec

 ρ = density of water, lb-sec²/ft⁴

Model tests should be run to determine the actual resistance increment caused by inclusion of the thruster.

The thruster opening may be designed to have minimum impact on ship resistance by fairing its intersection with the hull. A fairing radius or conical section is recommended with the fairing radius increased and aligned with the flow, as determined from model flow tests, on the aft side of the thruster opening to lessen the resistance. Most thrusters are fitted with guards made from flat bars which minimize resistance as well as prevent ingestion of debris into the thruster. The guards are aligned with the local flow. Figure 21 shows a typical guard configuration.

The retractable rotatable type thruster may have no associated resistance penalty, when it is totally within the hull when not in use, and its closing port is fitted with a fairing to exactly match the hull shape in way of the thruster.

FIGURE 21 - TYPICAL THRUSTER GUARD AND OPENING INSTALLATION

One alternative for higher speed ships is to provide closure doors or covers for the thruster openings, which avoids the resistance increase. Thruster doors may be difficult to maintain, which accounts for the lack of recent design experience.

In addition to the resistance of the thruster openings, there is an increase in resistance when the thrusters are operating. This resistance is due to the acceleration of the water flowing through the thruster from rest to the speed of the ship. An estimate of this additional resistance is obtained from the following formula of Reference 8:

$$F_X = \rho \pi R^2 V_S (|F_{y\cdot}|/\rho \pi R^2)^{\frac{1}{2}}$$

where.

 ρ = density of water, lb-sec²/ft⁴

R = thruster outlet radius, feet

 V_s = ship speed, ft/sec

 F_V = lateral thrust, lbs

6. <u>Thruster Opening Design</u>

The thruster opening for a tunnel thruster serves as both the inlet and outlet for the propeller. As the inlet it should have a smoothly curved shape to minimize inlet losses. As the outlet it should have a sharp edge to keep the jet flow stable to minimize losses. A compromise which satisfies both requirements, see Figure 21, consists of an inlet radius which ends at the tunnel at a diameter of 1 to 2 inches larger than the tunnel diameter, leaving a step change in diameter. Alternatively, a conical opening which is left with a sharp angle edge at the tunnel, may be used. A jet thruster inlet opening would omit the step and the exit would be usually sharp edged.

Several installation parameters affect the rated thrust and torque values for tunnel thrusters. Correction factors from Reference 9, which account for the effects of the tunnel length, opening radius or cone length, and number of grid bars, are presented in Figures 22 and 23. The correction factors are based on reference values of a tunnel length of 2 tunnel diameters, an opening radius of 0.1 tunnel diameter and no grid bars. The scale for the effects of conical opening length are based on limited data which indicate that for the same performance the cone length should be 50% greater than the equivalent opening radius. The installed thrust is the rated thrust multiplied by the thrust correction factors obtained from Figure 22 for the particular installation. The installed torque or power is the rated torque or power multiplied by the torque correction factors obtained from Figure 23 for the particular installation. The propeller pitch may need to be adjusted to match the installed thruster torque or power to that of its motor.

FIGURE 22 - INSTALLED THRUST FACTORS

FIGURE 23 - INSTALLED TORQUE FACTORS

568-1-i. Sample Calculation

The following pages demonstrate the use of Tables 5 through 13 to perform a thruster sizing calculation. The ship in the example is the T-ARC mentioned earlier, and for which data is presented in the text. The tables should be self-explanatory. They follow consecutively beginning with the wave force calculation. Table 5.

The results of Table 5 are entered in Table 10 before beginning on Table 7. The results of Table 7 are then entered in Table 10 and Table 9 is begun. When all of Table 10 is complete either Table 11, 12 or 13 is used, depending on whether there are two thrusters or one.

In the example all three cases have been solved.

The ship is assumed to be making $1.0~\rm knots$ ahead into a sea state 3, with a 4.90 feet significant wave height. The ship is 150 degrees from the waves, wind, and current. The calculation should also be repeated for other angles in order to isolate the most severe condition. The wind speed is $20.0~\rm knots$, and the current speed is $0.50~\rm knots$.

For case 1, both bow and stern thrusters, a thrust degradation calculation is included. For this calculation the propeller slip ratio is assumed to be 1.25, so the speed used for the stern thruster calculation was 1.25 knots, while 1.00 knots was used for the bow thruster.

TABLE 5 - WAVE FORCE AND MOMENT WORKSHEET

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
n	$\tau_n = \frac{\lambda_n}{L_s}$	$\omega_{\mathbf{n}} = \sqrt{\frac{2\pi g}{L_{\mathbf{s}} \tau_{\mathbf{n}}}}$	$s = \frac{\omega_n}{g} V_s \cos \psi$	$\omega_{\mathbf{e}} = \omega_{\mathbf{n}}(1-\mathbf{s})$	(1-2s)	T ⁴ ω ⁴ ο n	$\begin{pmatrix} \frac{-1944.5}{T_0^4 u} \end{pmatrix}$
1	.170	1.602	073	1.718	1.145	4111.66	.623
2	.222	1.401	064	1.491	1.127	2411.07	.446
3	.302	1.202	055	1.267	1.109	1302.87	.225
4	.436	1.000	045	1.045	1.091	625.09	.045
5	.538	.900	041	.937	1.082	410.54	.009
6	.681	.800	036	.829	1.073	256.23	.001
7	.889	.700	032	.723	1.064	150.35	.000
8	1.21	.600	027	.617	1.054	81.16	.000
9	1.743	.500	023	.512	1.045	39.11	.000
10	2.151	.450	020	.459	1.041	25.68	.000

 $L_s = SHIP LENGTH (feet) = 464.0$

 $V_s = SHIP SPEED (ft/sec) = 1.688$

 Ψ = HEADING ANGLE = 150.

 $T_{O} = MODAL PERIOD (sec) = 5.0$

 $g = 32.2 \text{ ft/sec}^2$

 $H_{1/3}$ = SIGNIFICANT WAVE HEIGHT (ft) = 4.9

 $\rho g = 64 \text{ lbs/ft}^3 \text{ SALT WATER}$

 $\rho g = 62.4 \text{ lbs/ft}^3 \text{ FRESH WATER}$

TABLE 5 - WAVE FORCE AND MOMENT WORKSHEET (CONT'D)

	THE PARTY OF THE P					
	(1)	(5)	(9)	(10)	(11)	(12)
	n	ω e	$S_{e}(\omega_{n}) = \frac{1}{\omega_{n}} \frac{483.5(H_{1/3})^{2}}{T_{o}^{4}\omega_{n}^{4}} e^{\frac{-1944.5}{T_{o}^{4}\omega_{n}^{4}}}$ $= \frac{483.5(H_{1/3})^{2}x(8)}{(3)x(7)}$	$\omega_{\text{mean}} = \frac{1}{2}(\omega_{\text{mean}} + \omega_{\text{mean}})$	ພ - ພ Mean Mean n+1	ω _e - ω _e 1 2
			$=\frac{(3)x(7)}{(3)x(7)}$			ω _e - ω _e 9 10
	1	1.718	1.099			.227
	2	1.491	1.534	1.605	.226	
	3	1.267	1.667	1.379	.223	
- 68	4	1.045	.828	1.156	.165	
1	5	.937	.275	.991	.108	
	6	.829	.029	.883	.107	
	7	.723	.000	.776	.106	A CONTRACTOR OF THE CONTRACTOR
	8	.617	.000	.670	.105	
	9	.512	.000	.565	.079	
	10	.459	.000	.486		.053

TABLE 5 - WAVE FORCE AND MOMENT WORKSHEET (CONT'D)

	(1) n	(5) ^ω e	(13) Δω _e (11)+(12)	$\frac{2S_{e}(\omega_{n}) \Delta \omega_{e}}{(1-2s)} = \frac{2x(9)x(13)}{(6)}$	(15) R _{xx} (ω _e)	(16) R _{yy} (ω _e)	(17) R _m (ω _e)	(18) LONGITUDINAL WAVE FORCE $\frac{2S_{e}(\omega_{n})}{(1-2s)} \Delta \omega_{e} R_{xx}(\omega_{e})$
The state of the s			(11)+(12)	= (6)				= (14)x(15)
ſ	1	1.718	.227	.436	032	410	043	014
ľ	2	1.491	.226	.615	032	411	039	020
	3	1.267	.223	.670	032	414	043	021
_	4	1.045	.165	.250	032	386	045	008
- 69	5	.937	.108	.055	031	148	027	002
	6	.829	.107		033	058	020	.000
	7	.723	.106	.000	028	035	014	.000
	8	.617	.105	.000	031	040	009	.000
	9	.512	.079	.000	043	038	005	.000
	10	.459	.053	.000	039	030	003	.000
	<u>an da da da karanga k</u>							(21) Σ =065

DDS 568-1

TABLE 5 - WAVE FORCE AND MOMENT WORKSHEET (CONT'D)

Company of the same of the same	The second secon		
(1)	(2)	(19) TRANSVERSE WAVE FORCE	(20) WAVE MOMENT
n	^ω e	$\frac{2S_{e}(\omega_{n})}{(1-2s)} \Delta \omega_{e} R_{yy}(\omega_{e})$	$\frac{2S_{e}(\omega_{n})\Delta \omega_{e}}{(1-2s)} R_{m}(\omega_{e})$
***************************************		= (14)x(16)	$= (14) \times (17)$
1	.170	- 179	019
2	.222	253	024
3	.302	277	029
4	.436	097	011
5	.538	008	001
6	.681	.000	.000
7	.889	.000	.000
8	.121	.000	.000
9	1.743	.000	.000
10	<u>,</u> 2.151	.000	.000
		$\Sigma = -0.814$ (22)	084 (23)

 $F_{xx}^2 = I_{apg} \times L_s \times (21) = 964.1bs$ $F_{yy}^2 = I_{apg} \times L_s \times (22) = -12,084.1bs$ $N_m^2 = I_{apg} \times L_s^2 \times (23) = -581,421.ft.1bs$

TABLE 7 - WIND FORCE AND MOMENT CALCULATION WORKSHEET

				F ^w xx	F ^w yy	N ^w _m
(1)	Pair	Density of air	lb-sec²/ft⁴	.0023602	.0023602	.0023602
(2)	A _s	Long proj area	ft ²	N.A.	24,500	24,500
(3)	Af	Trans proj area	ft ²	5,148	N.A.	N.A.
(4)	V _w	Wind Speed	ft/sec	33.756	33.756	33.756
(5)	Ψ	Heading Angle	degrees	150°	150 ⁰	150 ⁰
(6)	C _{XX} (A)	From Table 6	N.A.	-0.652	N.A.	N.A.
(7)	C ^{AA} (♠)	From Table 6	N.A.	N.A.	-0.520	N.A.
(8)	C _m (Ψ)	From Table 6	N.A.	· N.A.	N.A.	-0.0695
(9)	L _s	Ship length	ft	464.0	464.0	464.0
(10)	V _W ²	(4)x(4)	ft²/sec²	1,139.467	1,139.467	1,139.467
(11)	0.5ρV _w ²	0.5(1)(10)	lb/ft²	1.344	1.344	1.344
(12)	F ^w _{xx}	(11)(3)(6)	1b	-4,513.4	N.A.	N.A.
(13)	F ^w yy	(11)(2)(7)	1b	N.A.	-17,131.	N.A.
(14)	N _m	(11)(2)(9)(8)	ft-lb	N.A.	N.A.	-1,062,404

TABLE 9

CURRENT FORCE AND MOMENT CALCULATION WORKSHEET

				F ^C xx	F ^C yy	N ^C m
(1)	ρ .	Density water	1b-sec ² /ft ⁴	1.9905	1.9905	1.9905
(2)	Ls	Ship length	feet	464.0	464.0	464.0
(3)	V _s	Ship speed	feet/sec	1.688	1.688	1.688
(4)	V _C	Current speed	feet/sec	0.8439	0.8439	0.8439
(5)	ψ	Heading angle	degrees	150 ⁰	150 ⁰	150°
(6)	V _{xx}	(3) - (4) cos ψ	feet/sec	2.42	2.42	2.42
(7)	V _{yy}	(4) sin ψ	feet/sec	0.42	0.42	0.42
(8)	θ	If (6) > 0.0; tan ⁻¹ ((7)/(6))	degrees	9.90 ⁰	9.90 ⁰	9.90 ⁰
		If (6) < 0.0; 180+tan ⁻¹ ((7)/(6))	degrees	-	-	_
		If (6) = 0:0;	degrees	180	180	180
(9)	Cc ^{XX} (θ)	from Table 8	N.A.	00193	N.A.	N.A.
(10)	Cc ^{λλ} (θ)	from Table 8	N.A.	N.A.	00429	N.A.
(11)	Cc ^m (θ)	from Table 8	N.A.	N.A.	N.A.	00103
(12)	$v_{xx}^2 + v_{yy}^2$	$(6)^2 + (7)^2$	feet ² /sec ²	6.03	6.03	6.03
(13)	.5pL _s 2	.5(1)(2)(2)	lb-sec ² /ft ²	214,273.34	214,273.34	214,273.34
(14)	$.5\rho L_s^2 \times (V_{xx}^2 + V_{yy}^2)$	(12)(13)	lbs	1,291,608	1,291,608	1,291,608
(15)	Łc ^{XX}	(14)(9)	lbs	-2,490	N.A	N.A.
(16)	Fc ^{yy}	(14)(10)	lbs	N.A.	-5,541	N.A.
(17)	Ис ^ш	(14)(2)(11)	ft-lbs	N.A.	N.A.	-617,046

TABLE 10

TOTAL FORCE AND MOMENT WORKSHEET

				Fe ^{XX}	F ^e yy	Ne ^{tu}
(1)	F ² xx	From Table 5	lbs	- 964	Ν.Α.	N.A.
(2)	F ² yy	From Table 5	lbs	N.A.	-12,084	N.A.
(3)	N ² m	From Table 5	ft-lbs	N.A.	N.A.	-581,421
(4)	F ^W XX	From Table 7	lbs	-4,513	N.A.	N.A.
(5)	F ^w yy	From Table 7	lbs	N.A.	-17,131	N.A.
(6)	Ν ^w m	From Table 7	ft-lbs	N.A.	N.A.	-1,062,404
(7)	FcXX	From Table 9	lbs	-2,490	N.A.	N.A.
(8)	Fcyy	From Table 9	lbs	N.A.	-5,541	N.A.
(9)	Ис ^ш	From Table 9	ft-lbs	N.A.	N.A.	-617,046
(10)	FeXX	(1)+(4)+(7)	lbs	-7,967	N.A.	N.A.
(11)	F ^e yy	(2)+(5)+(8)	lbs	N.A.	-34,756	N.A.
(12)	Nem	(3)+(6)+(9)	ft-lbs	N.A.	N.A.	-2,260,871

FIGURE 24 - DIMENSIONS FOR T-ARC EXAMPLE PROBLEM

TABLE 11

FORCE BALANCE WORKSHEET FOR TWO THRUSTERS, BOW AND STERN

(1)	F ^e yy	(11) from Table 10	-34,756
(2)	N ^e m	(12) from Table 10	-2,260,871
(3)	dl	Distance in feet	183.5
(4)	d ₂	Distance in feet	158.5
(5)	d ₁ +d ₂	(3)+(4)	342
(6)	dʒ	Rudder lever,feet	225
(7)	F ^R y	Rudder force, 1bs	1,000
(8)	F ^F y	- <u>(2)-(4)(1)+((6)-(4))2(7)</u> , Bow Thruster (5) Force, lbs	+23,107
(9)	F ^A y	$\frac{+(2)-(3)(1)-((6)+(3))2(7)}{(5)}$, Stern Thruster Force, 1bs	+9,649

TABLE 12
FORCE BALANCE WORKSHEET FOR BOW THRUSTER ONLY

(1)	F ^e yy	(11) from Table 10	-34,756
(2)	N ^e m	(12) from Table 10	-2,260,871
(3)	d ₁	Bow thruster lever, feet	183.5
(4)	d3	Rudder lever, feet	225.0
(5)	d ₁ +d ₃	(3)+(4)	408.5
(6)	F ^F y	$-\frac{(1)(4)+(2)}{(5)}$, Bow Thruster Force, lbs	-24,678
(7)	2F ^R y	-(6)-(1), Rudder Force, 1bs	-59,434

The rudder side force required to balance the bow thruster force exceeds the rudder side force available from any type of rudder. A stern thruster is required for this environmental condition.

Corrections for thrust degradation due to forward speed, thruster guards and entrance fairings would be made similar to the bow and stern thruster case.

TABLE 13

FORCE BALANCE WORKSHEET FOR STERN THRUSTER ONLY

(1)	F ^e yy	(11) from Table 10	- 34,756
(2)	N ^e m	(12) from Table 10	-2,260,871
(3)	d ₂	Stern thruster lever, feet	158.5
(4)	d3	Rudder lever, feet	225.0
(5)	d3-d2	(4)-(3)	66.5
(6)	F ^A y	$\frac{(1)(4)+(2)}{(5)}$, Stern Thruster Force, lbs	151,594
(7)	2F ^R y	-(1)-(6), Rudder Force, lbs	-116,838

The rudder side force required to balance the bow thruster force exceeds the rudder side force available from any type of rudder. A bow thruster is required for this environmental condition.

Corrections for thrust degradation due to forward speed, thruster guards and entrance fairings would be made similar to the bow and stern thruster case.

Thrust Degradations

Bow thruster:

$$V_s = 1.0 \text{ knots} = 1.689 \text{ ft/sec}$$

$$F_y^F = 23,107 \text{ lbs}$$

$$\rho = 1.9905 \text{ lb-sec}^2/\text{ft}^4$$

$$R = 4 \text{ ft}$$

$$\frac{V_s}{\rho \pi R^2} = .113 \text{ from Figure 12 Thrust effectiveness} = .70$$

$$\frac{F_y}{\rho \pi R^2}$$
from Figure 13 Moment effectiveness = .80

Required stern thruster force = 23,107/.70 = 33,010 lbs

Assuming that a specific thrust of 25 lbs/hp (Figure 14)

the required thruster HP is 1,320 hp

Stern thruster:

$$V_{s} = -1.25 \text{ knots} = -2.111 \text{ ft/sec}$$

$$F_{y}^{A} = 9,649 \text{ lbs}$$

$$\rho = 1.9905 \text{ lb-sec}^{2}/\text{ft}^{4}$$

$$R = 4 \text{ ft}$$

$$\frac{V_{s}}{\rho \pi R^{2}} = -.176 \text{ from Figure 12 Thrust effectiveness} = .70$$

$$from \text{ Figure 13 Moment effectiveness} = .70$$

Required stern thruster force = 9,649/.70 = 13,784The required thruster horsepower is 13,784 = .551

Note: If the rudder force is not known it can be estimated by:

$$F_R^Y = \frac{1}{2} \rho C_L S V^2$$

where,

$$\rho = 1.9905 \text{ lb-sec}^2/\text{ft}^4$$

 $S = surface area of rudder, ft^2$

V = velocity in ft/sec

C_L = lift coefficient = about 1.0

Added Resistance of Thruster Openings

Bow thruster:

$$X_T = 0.035 \ \rho \pi \ R^2 V_s^2$$

$$R = 4 ft$$

$$V_S = 1 \text{ knot} = 1.689 \text{ ft/sec}$$

$$\rho = 1.9905 \text{ lb-sec}^2/\text{ft}^4$$

 X_T = thruster resistance (bow thruster) = 10 lbs

Stern thruster:

$$X_T = 0.035 \ \rho \pi \ R^2 V_s^2$$

$$R = 4 ft$$

$$V_s = 1.25 \text{ knots} = 2.111 \text{ ft/sec}$$

$$\rho = 1.9905 \text{ lb-sec}^2/\text{ft}^4$$

 X_T = thruster resistance (bow thruster) = 16 lbs

Total resistance of bow and stern thruster openings = 26 lbs

Added Resistance of Operating Thruster

Bow thruster:

$$F_{X} = \rho \pi R^{2}V_{S} \left(\frac{|F_{y}|}{\rho \pi R^{2}}\right)^{\frac{1}{2}}$$

$$V_s = 1.689$$
 ft/sec

$$F_y = 33,010 \text{ lbs}$$

$$F_X = 3,070 \text{ lbs}$$

Stern thruster:

$$F_{x} = \rho \pi R^{2}V_{s} \left(\frac{|F_{y}|}{\rho \pi R^{2}}\right)^{\frac{1}{2}}$$

$$V_{s} = 2.111 \text{ ft/sec}$$

$$F_{y}^{A} = 13,784 \text{ lbs}$$

Effect of Thruster Guards and Entrance Fairings

Bow thruster:

$$F_y = 33,010 \text{ lbs}$$

 $F_{x} = 2,479 \text{ lbs}$

Number of guards = 10 (from Figure 25)

Assume a radius fairing whose raduis = .10D

$$(T/T_0)_{\text{fairing}} = .995$$

$$(T/T_0)_{guards} = .925 \text{ (extrapolated)}$$

Assume
$$L/D = 2.0$$

$$(T/T_0)_{length} = .990$$

Installed thrust for the bow thruster = 33,010 $(\frac{1}{.995})(\frac{1}{.925})(\frac{1}{.990})$ = 36,228 lbs

Assuming the same dimensions for the stern thruster and the same number of $\operatorname{\mathsf{guards}}$:

$$F_y^A = 13,784 \text{ lbs}$$

Installed thrust for the stern thruster = $13,784 \ (\frac{1}{.995})(\frac{1}{.925})(\frac{1}{.990}) = 15,128 \ lbs$

Assuming a specific thrust of 25 lbs/hp, the bow thruster would require 1,449 hp and the stern thruster would require 605 hp.

FIGURE 25 - TYPICAL BOW THRUSTER WITH FLATBAR GUARDS