
6. SHIP HULL FORM DESIGN  
 
At the preliminary stage of ship design it is necessary to evolve a feasible technical design. Here feasible implies 
a suitable set of dimensions and a balance of masses such that the ship is of adequate size for the intended 
service, floats upright at the correct draught, achieves the correct speed and has structural integrity. International 
regulations covering such aspects as freeboard and subdivision will also require consideration at the preliminary 
stage. One of the major elements of vital importance for a successful ship design is the hull form itself. It affects 
all the major design elements, including performance, space and function; therefore a sound decision on the hull 
form characteristics is of utmost importance.  
 
The creation of a fair set of ship lines is an important part of the initial phase of ship design. At the early stages 
of design, the designer needs to develop from the relatively sparse information available about the desired 
features of the hull form, a complete set of lines defining the form with sufficient accuracy for subsequent design 
calculations. The seakeeping, manoeuvring, and speed characteristics, as well as boundaries of the   decks, 
payload capacities, vertical and longitudinal centres of gravity of cargo and fuel oil depend on the hull envelope 
represented by this plan. 
 
The hull form has to meet a large number of different objectives, including 
 
• Required displacement at the design draught 
• Required cargo space and tank capacities 
• An LCB position at the design draught which in association with the weights and centres of gravity of the 

ship and its deadweight items enables the ship to be loaded in a way that will result in satisfactory trim 
• Required deck areas to accommodate all aspects of the arrangement 
• Features to minimise powering requirements; low resistance, good hull efficiency and an ability to 

accommodate the propeller with clearences that make vibration unlikely 
• Good seakeeping and sufficient manoeuvrability 
• KM values at operating draughts which will ensure satisfactory stability when the ship is loaded as intended 
• Production friendliness with as much flat plating as can be arranged and with the minimum amount of 

double curvature in the shell plating 
• Aesthetic appeal particularly on passenger ships 
 
There are infinite number of shapes satisfying the displacement equation for any set of values of length, beam, 
draught, block coefficient, and displacement.  The challenge lies in developing an optimum hull form or, at least, 
one having acceptable performance. Hydrodynamic characteristics are very sensitive to even minor changes in 
hull form. Therefore, the selection of ship lines requires great care in order to avoid unacceptable results. 
Although several attempts have been made to apply mathematical theories developed for wave resistance to the 
development of hull lines, see    Inui  (1962), Pien  (1964) and    Goren and    Calisal (1988) for example, a fully 
acceptable procedure does not exist even when the only hydrodynamic consideration is the resistance 
characteristic in calm water. 
 
6.1. Hull Form Design Parameters 
 
The geometric properties of a ship’s hull form can be studied in the following groups:.  
 
• Sectional Area Curve (SAC) . 
• Loaded waterline (LWL) or Design waterline (DWL) curve. 
• Underwater hull form coefficients (CB, CM, CP, CWP, LCB, LCF) 
• Bow profile and section shape for forebody 
• Stern profile and section shape for afterbody 
• Angle of entrance 
 
In    Figure 6.1, schematic curves of longitudinal distribution of the sectional area and beam at the loaded 
waterline   are   shown.   This figure contains useful information concerning the   naval architectural hull form 
parameters. The area under the sectional area curve provides the displaced volume and its longitudinal centre, 
LCB, whereas the area under the beam curve provides the waterplane area and its longitudinal centre, LCF. 
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Figure 6.1. Sectional area (SAC) and Loaded waterline (LWL) curves 

 
6.1.1. Block Coefficient (CB) 
 
The block coefficient is the most basic parameter used to define the fullness of the underwater hull form. Many 
of the techno economic performance characteristics of a ship are affected by the block coefficient. Consequences 
of a reduction in block coefficient will, in general, be as follows 
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• Reduction in the required propulsion power due to the improvements in wavemaking resistance and 

propulsive efficiency. This may result in a lighter engine and reduced weight. 
• Decrease in fuel consumption or higher speed with the same engine 
• Increase in steel weight  
• Reduced hold capacity 
• Improved seakeeping performance with lower motion levels and reduced probability of slamming 
• Better directional stability with reduced manoeuvrability 
• Slight improvement in static stability characteristics 
• Increased building cost due to 

• Greater quantities of curved plates and sections 
• Fewer flat plates with rectangular boundaries 
• The need for a greater variety in plate thickness and size and for more sections 
• More scrap 

 
The upper limit of block coefficient for commercial ships is considered 0.87 beyond which satisfactory flow to 
the propeller cannot be maintained. There is a long list of empirical formulae for the prediction of block 
coefficient, which will be noted below.  
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Troost   :  nB F118.215.1C −=  
 
Ayre   :  nB F68.1CC −=  

Fn 0.149 0.178 0.208 0.238 0.267 0.297 
C 1.04 1.045 1.05 1.06 1.07 1.08 

Lindbald  :  nB F68.110.1C −=  

Silverleaf/Dawson :  nB F404.2214.1C −=  

Van Lammeren  :  nB F02.2137.1C −=  

Minorsky  :  nB F387.222.1C −=  

Telfer   :  
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Sabit   :  2
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Katsoulis  :       L, B, T (m), V(knot) dcba

B VTBLfKC =
a = 0.42 b = -0.3072 c = 0.1721 d = -0.6135 k = 0.8127 

 
Ship type f 
Navy ships 0.91 
Car carriers - Ro-Ro 0.97 
Refrigerated cargo 0.97 
Cargo liners 0.98 
General cargo 0.99 
Crude oil tankers 0.99 
OBO 1.00 
Timber ships 1.00 
Container ships 1.00 
Passenger ships 1.00 
Bulk carriers 1.03 
Liquefied gas tankers 1.04 
Product tankers 1.05 
Chemical tankers 1.06 
Ferries 1.09 

 

Schneekluth   : 
26

20BL
F
14.0C
n

B
+

=   
26

20BL
F

23.0C 3/2
n

B
+

=  

Townsin   : 





 −

+= −

4
F10023tan125.070.0 n1

BC  

Barass    : C nB F522.107.1 −=  Supertanker 

     C nB F522.101.1 −=   Ro-Ro 

Scher and Benford  :  nB F505.1086.1C −= Panamax  bulk carrier 
             (B ≤ 32.2m  T  ≤ 14.5m)  

Gilfillan-Alexander  : 
L

V269.0968.0CB −=    V(kn), L(ft) bulk carrier 
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6.1.2. Prismatic coefficient 
 
The prismatic coefficient represents the distribution of fullness along the length. For low CP the volume is 
concentrated towards midships while for high CP the volume is more uniform along the length. This is a main 
factor in determining residuary and wave making resistance. The usual approach to determine CP is to predict CB 
and CM and hence CP=CB/CM. 
 
Porricelli   : C 073.0C917.0 BP +=  
 
Wright   : C 04.0C96.0 BP +=   Bulk carrier 

Figure 6.2. Prismatic coefficient as recommended by Saunders 
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6.1.3. Midship section area coefficient (CM) 
 
This coefficient represents the fullness of the midship section and is closely related to the resistance 
characteristics of the ship. An increase in CM will normally lead to 
 
• Increase in wetted surface area and hence the frictional resistance.  
• Increase in the length of entrance which will result in reduced wavemaking resistance 
• Increase in the length of run which means a reduction in separation resistance may be expected 
• Improved propulsive performance 
• Greater roll damping and reduced rolling motion in heavy seas 
 
A formula for CM in terms of the bilge radius and rise of floor is 
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where 
 
R : bilge radius 
F      : rise of floor 
K      : width of keel 
 
with no rise of floor this reduces to 
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There seem to be three motives for keeping the bilge radius small 

 The greater resistance to rolling provided by a square bilge 

e resistance 

chneekluth recommends the following formula for the bilge radius of conventional ship forms 

 
•
• The easier cargo stowage of a squarer hold 
• The finer CP which will generally  reduce th
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n alternative formula is as follows 
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Figure 6.3. Typical midship sections 
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Some of the empirical formulae, which can be used to estimate the midship section area coefficent, are given 
below 

 
Van Lammeren   :   

CB 0.55 0.60 0.65 0.70 0.75 
CM 0.960 0.976 0.980 0.984 0.987 

 
Van Lammeren   :  BM C1.09.0C +=  

Keslen    :  56.3
BM C0056.0006.1 −−=C  
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B
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045.0C95.0
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+
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Seri 60    :  6.0C)6.0C(085.0977.0 BBM ≥C −+=  

Munro-Smith   :  3/1
BBM C)445.1C4786.0( +−=C  

 
CB Van 

Lammeren 
Van 
lammeren 

Keslen HSVA Series 60 Series 60 Munro 
Smith 

0.55 0.960 0.955 0.959 0.942 - - 0.968 
0.60 0.976 0.960 0.971 0.961 0.976 0.977 0.977 
0.65 0.980 0.965 0.980 0.975 0.981 0.981 0.982 
0.70 0.984 0.970 0.986 0.985 0.986 0.986 0.986 
0.75 0.987 0.975 0.990 0.992 0.990 0.990 0.987 
0.80 - 0.980 0.994 0.996 0.994 0.994 0.986 
0.85 - 0.980 0.996 0.999 0.997 0.998 0.983 
 
6.1.4. Waterplane area coefficient (CWP) 
 
The waterplane area coefficient significantly affects the resistance, stability and seakeeping characteristics of a 
ship. There is common tendency to use a high waterplane area coefficient to attain high stability and seakeeping, 
e.g. passenger ferries. This also has the advantage of providing a large deck area, which is an essential feature for 
passenger ships and ferries. 
 
The waterplane area coefficient, together with the block coefficient determines the form of cross sections. 
Therefore this coefficient should be determine in accordance with the block coefficient and the desired 
underwater hull form. A higher CWP will usually result in V shaped sections while U shaped sections are typical 
for low CWP forms. 
 
Some of the empirical formulae to estimate CWP are as follows 

Riddlesworth  :  BWP C
3
2

3
1C +=      (normal section) 

Schneekluth  :   (U form) 3/1
PPWP )C1(17.0C95.0C −+=

Schneekluth  :      (V form) 3/2
PWP CC =

Schneekluth  :  
M

B
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C
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3
1C +=    (V form) 

 :  025.0CBWP −=C    (V form) 

Parsons   :  PWP C875.0175.0C +=  (single screw, cruiser stern) 

Parsons   :  PWP C86.018.0C +=   (Seris 60) 

Parsons   :  PWP C760.0262.0C +=  (twin screw, cruisr stern) 
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Parsons   :  PWP C810.0262.0C +=  (small vessel, transom stern) 

 
Eames   :  PWP C52.044.0C +=   (small naval vessel) 

Wright   : BWP C
8
5

8
3

+=C   (bulk carrier) 

Gilfillan   : 146.0C265.1C BWP −=  (bulk carrier) 

Porricelli  : BWP C702.0325.0C +=  (container) 

Porricelli  : BWP C702.0336.0C +=  (RoRo) 

Porricelli  : BWP C702.0306.0C +=  (general cargo, tanker) 
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0.55 0.959 0.574 0.700 0.673 0.691 0.708 0.717 
0.60 0.971 0.618 0.733 0.710 0.726 0.739 0.750 
0.65 0.980 0.663 0.766 0.748 0.760 0.771 0.781 
0.70 0.986 0.708 0.800 0.785 0.794 0.803 0.812 
0.75 0.990 0.758 0.833 0.826 0.831 0.836 0.841 
0.80 0.994 0.805 0.866 0.863 0.865 0.868 0.869 
0.85 0.996 0.853 0.900 0.900 0.899 0.901 0.907 
 
6.1.5. Longitudinal Centre of Buoyancy (LCB) 
 
The position of the centre of buoyancy may be dictated by the disposition of weight and the need to achieve a 
satisfactory trim, but in most ships it should be governed by a wish to minimise power requirements. 
 
The position of LCB for minimum powering depends mainly on the Froude number and block coefficient. The 
position of LCB differs for ships with normal and bulbous bows, as the LCB on a form with a bulb will be 
anything from 0.5-1 % further forward than that of an otherwise very similar form with a normal bow. The 
position also differs for twin screw ships for which the optimum position is further aft than it is for single screw 
ships, reflecting the fact that the lines of a twin screw ship can be optimised almost entirely on resistance 
considerations with little need to consider the flow to the propellers which plays a major part in the design of the 
stern of a single screw ship. 
 
Figure shows how the position of LCB moves as the CB changes from unity to a very fine form. 
 
• At CB=1.00 the LCB must be at amidships 
• For a barge the first essential is a swim bow, so at about CB=0.95 the LCB moves aft to say 1.5% . 
• The next improvement to be made to ease movement of the vessel is a swim stern, so at about CB=0.90 the 

LCB moves back to amidships 
• For the slowest self propelled shipshape vessel the bow is now generally very full spoon shaped and this 

coupled with the need for good flow to the propeller(s), requiring fining aft means that for a CB of between 
0.90 and 0.75 the LCB is well forward, say about 2.5-3.0% or even 3.5%. 

• Once the run has been made such that it provides a satisfactory flow to the propeller, it is only necessary to 
fine it gradually as the block coefficient is further reduced for ships with higher speeds and powers. The 
forebody, on the other hand, is where reductions in wavemeking resistance can best be effected and from 
being markedly fuller than the aft body, the forebody changes to being much finer, with the result that the 
LCB progressively shifts to a position well aft of amidships. 

• Finally for very fine ships there is a tendency for the LCB to return towards amidships. 
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Figure 6.4.  Relationship between block coefficient and the position of LCB 
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Figure 6.5  gives a plot of the optimum range of LCB position for both normal and bulbous bow forms against 
CB. 

 
Figure 6.5. Variation of LCB position 

 
Harvald (1983) recommends the following formula based on Froude number 
 

8.0F4570.9LCB n ±−=  
 

where LCB is a percentage of length and  (+) indicates the forward direction 
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Troost   : ( )[ ]125.0C175.05.0LLCB P −−=   
 
Gilfillan   : ( ) BPP L5.12C5.17LCB −=  (% LBP – bulk carrier) 

Figure 6.6. LCB position versus block coefficient 
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6.1.6. Longitudinal centre of flotation (LCF) 
 

Porricelli : 





 += 914.0
160
VL5.0LCF  (tanker) V:speed in knots 

Porricelli : 





 += 9.0
100
VL485.0LCF  (bulk carrier) V:speed in knots 

 

Porricelli : 





 += 03.1

V
95.0L5.0LCF  (twin screw – transom stern)  

Porricelli : 







+






 += 23.0924.0
135
V5.0LLCF  (twin screw – cruiser stern) 

 
6.1.7. Bow Profile 
 
The first decision to be taken in relation to the bow is whether to fit a normal or a bulbous bow. A normal bow is 
cheaper to manufacture and a bulbous bow should only be fitted if doing so will reduce the resistance and 
thereby either increase speed or reduce the power required and with it the fuel consumption. The range of Froude 
numbers and block coefficients at which such an improvement is likely can be summarised as follows: 
 
• The bulbous bow is advantageous for fast ships with CB values less than 0.625 and Fn greater than about 

0.26 
• The bulbous bow presents no advantage for ships with CB values between 0.625 and 0.725 unless these have 

higher than normal speeds 
• The bulbous bow is again advantageous for CB values between 0.725 and 0.825 but probably not for CB 

values over 0.825 
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At all block coefficients bulbous bows show the best advantage on over driven ships and are often 
disadvantageous on ships, which are relatively fine for their speeds.  
 
It is generally accepted that bulbous bows can offer their greatest advantage in the ballast condition, particularly 
on full lined ships with block coefficients in excess of 0.75. In general it appears that if a bulbous bow is not 
advantageous at the load draught, it will only become advantageous in ballast if the ship is operated at or near its 
full power giving a speed in ballast at least 10 % or say 2 knots or so, more than the loaded service speed. 

 
Figure 6.7. Criterion for bulbous bow according to Watson 

 
A bulbous bow will generally help to reducing pitching, but on the other hand it is more likely to cause 
slamming. 
 
Bulbous bows come in a variety of shapes and sizes . One main division is that between a fully faired bulb and 
one in which there is a sharp knuckle line between the bulb and a normal bow configuration (added bulb). The 
added bulb is generally simpler to manufacture and seems, on full lined ships, to give at least as good results as 
the faired bulb. 
 
The next division is between bulbs which project as rams significantly forward of the for perpendicular, and 
those with little or no such projection. Ram bows also vary in the vertical positioning of the forward projection, 
which in some designs commence near the waterline and in others are well submerged. 
 
One of the principal criteria applied to the design of a bulbous bow is the relationship that its sectional area at the 
fore perpendicular bears to the midship section area. 

 
6.1.8. Forward section forms 
 
To characterize the section form, the letters U and V are used corresponding to the form analogy.  In the 
following table an extreme U section is compared with an extreme V section. It is assumed that both forms have 
the same sectional area below the loaded waterline. 
 

 U section V section 
Deck area lower greater 
Initial stability lower greater 
Wetted surface lower greater 
Steel weight lower greater 
Labour lower higher 
Wave making resistance lower higher 
Seakeeping worse better 
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6.1.9. Afterbody section forms 
 
Sterns have to be considered in relation to the following roles 
 
• The accommodation of propeller(s) with good clearances that will avoid propeller excited vibration 

problems 
• The provision of good flow to the rudder(s) to ensure both good steering and good course stability 
• The termination of the ships waterlines in a way that minimises separation and therefore resistance 
• The termination of the ships structure in a way that provides the required supports for the propeller(s) and 

rudder(s) plus the necessary space for steering gear, stern mooring and towage equipment etc. and is 
economical to construct 

 
Flow to the propeller 
 
Where the propeller diameter (D) on a single screw ship is of normal size in relation to the draught, i.e. D/T is 
approximately 0.75, the main consideration is ensuring good flow to the propeller, with a figure of between 28 
and 300 being about the maximum acceptable slope of a waterline within the propeller disc area. 
 
Keeping to such a figure tends, of itself, to force the LCB forward on a full bodied ships. 
 
Lloyds recommended minimum clearances as a fraction of the propeller diameter for a four bladed propeller are 
 
Tip to stern frame arch  : 1.00 K 
Stern frame to leading edge at 0.7R : 1.50 K 
Trailing edge to rudder at 0.7R : 0.12 
Tip to top of sole piece  : 0.03 
 
where 
 







 +






 += 3.0

L
PC56.2

3050
L1.0K 2

BB  

 
where PB : power in kW 
 
The recommended clearance for a four bladed propeller on a twin screw ship, is 1.00 K.  
 
Large propellers 
 
Where the propeller is large in relation to the draught of the ship, a number of options exist: 
 
• The propeller can be fitted in such a position that the lower tip is below the line of the keel. This is common 

practice on warships, but merchant ship owners have been reluctant to allow this because of possible 
damage to the propeller in shallow water and possible additional dry docking problems and costs.  

• The ship can have a designed trim or raked keel. This is commonly used in small ships, notably tugs and 
fishing vessels. It is also used for the same reason on warships, even large twin-screw vessels. 

• A tunnel type form can be used. This form is successfully used on shallow draught river craft. 
 
Stern lines above the propeller 
 
It is very desirable from a resistance point of view that the stern lines above the propeller should be continued to 
form a cruiser stern, which is immersed at the operating draughts. A cruiser stern should extend aft sufficiently 
to cover the rudder but there is no need for there to be any significant immersion at the end of the waterline 
which may cause eddies particularly if the cruiser stern is terminated by a flat transom as has become fairly 
general practice in recent years. The top of the rudder should follow the lines of the stern with only the necessary 
clearance. 
 
Keeping the stern immersion to the desirable waterline position has the added advantage of permitting the 
greatest possible propeller diameter for a given draught. 
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In merchant ships transoms were first adopted for cost saving reasons, but once adopted the flat transom concept 
was progressively developed to provide more deck area for mooring equipment, to provide stowage for a tier of 
containers or to facilitate moving the accommodation further aft. It was also found that a considerable gain in 
KM could be obtained by the wider waterlines in the stern. 
 
A transom stern can greatly improve the static stability of a ship by increasing the KM but if advantage is taken 
of this to permit more top weight, the ship may have inadequate stability when it suffers the big loss in KM 
which can occur when the stern comes out of water when the ship is pitching in a seaway (broaching). 
 
In warships the transom stern was introduced not for cost cutting reasons but because it improved the 
hydrodynamic performance giving a less turbulent wake particularly at high speeds. As in merchant ships, the 
resulting increase in KM was appreciated for stability reasons and the additional deck area because it improved 
the arrangement. In fact in present warship practice the full midship beam is often maintained right to the 
transom and from upper deck level to very nearly the waterline. A further development in the sterns of high 
speed ships is the transom wedge or flap illustrated in Figure. This reduces the high stern wave that used to build 
up at the stern and thereby reduces resistance. 

 
Table 6.1. Submergence of transom stern 

Froude number Submergence of transom stern 
<0.3 Above water 
≈0.3 Slightly submerged 
≈0.5 % 10-15 of draught submerged 
>0.5 % 15-20 of draught submerged 

 
6.1.10. Above Water Form 
 
Above the waterline, bows are raked forward largely to conform with the flare of the adjacent sections. Both 
rake and flare have as one of their objectives reducing both pitching and the amount of water shipped on the fore 
deck. Appearance and the minimisation of damage caused to the other vessel in a head on collision are further 
advantages of bow rake. 
 
Care should be taken not to exaggerate flare too much as waves hitting on side of a heavily flared bow can give 
rise to torsional vibrations and stresses. This is particularly important for fast ships such as container ships and 
warships. The severity with which the forces generated by the sea can impact on flare has been shown in a 
number of accidents in which complete bows have been broken off. 
 
6.2. Hull Form Design Methods 
 
A number of different methods of deriving hull shape exist in ship design, and they can be classified as follows: 
 
• The   most commonly used approach is to select a previous successful design as the parent hull and to distort 

it to give the new hull form with desired mix of features.  Although thousands of ships have been designed 
and built, and a great number of ship models have been tested and studied, a thorough understanding of ship 
hydrodynamics is still lacking.  What quality or qualities a good hull form must possess to have superior 
resistance, seakeeping, propulsive and   manoeuvring characteristics   are   still   not   quite   known.   Under 
such circumstances, a ship designer would normally try to find an existing ship with a good performance 
record to use as a basis for his new design. 

 
• The use of a particular, successful parent tends to lead to the families of designs that are apparent in the 

products of most design organisations. There are a number of well-known ship forms such as the Taylor 
Series, the Series 60, the BSRA Methodical Series et cetera. They are specified in a form, which allows hull 
offsets   to   be readily generated for specified hull form parameters. Having selected possible approximate 
parameters it is possible to use the lines of series forms with similar design parameters as a basis ship in the 
design studies. Thereafter, theoretical computations and tank test data may be classified according to ship 
type in the form of design charts or tables based on hull form parameters.  However, a review of   the 
literature reveals that there is little systematic hydrodynamic data in the public domain to support the 
modern ship designer in future hull form development. Most major systematic series date back to 1950s and 
1960s and the type and range of hull forms used in these series do not represent those of modern ship forms. 

 
• The designer may develop a rough, faired set of lines without any parent, relying solely on his eye and past 

experience. 
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• For simple shapes such as barges the hull forms can be created through the use of geometrical or 

mathematical equations.  For more complicated shapes, direct generation of hull forms is possible with the 
aid of interactive computer graphics and fairing procedures. 

 

PRELIMINARY
HULL FORM 

FORM 
CREATION 

LINEAR 
DISTORTION 

STANDARD 
SERIES 

TYPE 
SIZE 
SPEED 
MAIN DIMENSIONS  : L, B, T, D, f 
FORM COEFFICIENTS : CB, CP, CM, CWP, LCB, LCF 

 
Figure 6.8. Hull form design methods 

 
6.2.1. Standard Series Approach 
 
Over the years several hull form series have been developed for systematic resistance or propulsion tests. 
Variations from the parent hull(s) are usually developed by linear distortion methods such as Lackenby (1950)'s 
method. Using appropriate series, the designer can obtain a hull form by interpolation for desired parameters. 
Some of the important standard series with the hull form parameter ranges used is given in Table 6.1. 

 
Table 6.1. Parameter Ranges for Some Standard Series 

Series Series 60 Taylor BSRA SSPA MARAD DAWSON 
Coaster 

Type Single screw Twin screw Single screw Single screw Single screw Single screw 
Year       
Fn 0.12 

0.30 
 0.12 

0.33 
0.16 
0.32 

0.10 
0.21 

0.15 
0.30 

L/B 5.5 
8.5 

 5.33 
8.37 

6.18 
8.35 

4.5 
6.5 

5.5 
6.5 

B/T 2.5 
3.5 

2.25 
3.75 

2.12 
3.96 

2.1 
3.1 

3.0 
4.5 

2.05 
2.75 

( )3L1.0
∆

 
68 

302 
20 

250 
114.26 
385.64 

87.35 
220.53 

10.43 
197.78 

106.47 
291.62 

3/1

L
∇

 
4.56 
7.49 

4.85 
11.26 

4.2 
6.3 

5.06 
6.89 

5.247 
13.992 

4.61 
6.45 

CB 0.6 
0.8 

0.444 
0.796 

0.55 
0.85 

0.525 
0.750 

0.800 
0.875 

0.59 
0.75 

CP 0.614 
0.805 

0.48 
0.86 

0.570 
0.852 

0.553 
0.762 

0.805 
0.880 

0.607 
0.762 

LCB (% L) 2.5 Aft 
3.5 Fwd 

0.0 3.0 Aft 
3.5 Fwd 

2.0 Aft 
0.85 Fwd 

2.5 Fwd 3.5 Aft 
3.0 Fwd 
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Series DeGroot NPL Webb UBC 
Fishing 

BSRA 
Fishing 

Seri 64 

Type Round bilge Round bilge Round bilge Fishing Fishing High speed 
Year       
Fn  0.5 

3.0 
    

L/B 3.53 
10.09 

3.33 
7.50 

3.20 
5.75 

2.6 
4.0 

4.3 
5.8 

8.454 
17.734 

B/T 2.72 
6.58 

1.94 
10.21 

2.3 2 
3 

2.00 
3.50 

2 
4 

( )3L1.0
∆

 
 48.20 

158.41 
    

3/1

L
∇

 
 5.65 

8.40 
3.85 
5.22 

3.00 
4.47 

4.35 
5.10 

8.04 
12.40 

CB 0.293 
0.560 

0.397 
 

0.42 
0.53 

0.53 
0.61 

0.53 
0.63 

0.35 
0.55 

CP 0.463 
0.791 

0.693 
 

0.55 
0.70 

  0.63 

LCB 3.09 Aft 
11.50 Aft 

2.0 Aft 
6.5 Aft 

  2.90 Aft 
1.09 Fwd 

6.6 Aft 

 
This brief review shows that the standard series approach covers only some of the simpler variations in hull form 
with respect to the proportions of the main dimensions, fullness, and in some cases longitudinal centre of 
buoyancy. The range of variation in the series is, of necessity, limited so that the forms that can be deduced from 
the series are subject to corresponding limitations.  For similar reasons there are only few form parameters that 
can be varied independently while others being dependent variables. 
 
6.2.1.1. Taylor Series 
 
The Taylor standard series was the first major methodical series of ship forms to receive international attention. The series is 
a result of an evolution of several parent forms patterned after the British armoured cruise Leviathan of the Drake class 
(1900), a model of which was tested in the US Experimental Model basin in 1902. 
 
The method used to derive the Taylor standard series is essentially a graphical process. The nondimensional offsets are 
presented as a function of the prismatic coefficient for each waterline. 
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Figure 6.9. Typical Taylor series graph 
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6.2.2. Lines Distortion Approach 
 
In order to investigate the influence of different form parameters on the performance of a ship the designer needs 
to derive a new lines plan from a given parent design by modifying some form parameters of the parent design. 
The approach of linear distortion adresses itself to this task and aims at what amounts to a moderate 
extrapolation from the parent design by suitable mathematical operations. In principle, the designer should be 
able to vary any desired hull form parameter while keeping all others constant. The total desired variation may 
be subdivided into two major steps as principal and secondary parameter variations. 
 
When designing the lines by distorting existing forms it is usually sufficient to design the underwater body and 
then add the topside in the   conventional   way 
 
6.2.2.1. Variation of Principal Parameters of Hull Form 
 
To modify length, beam, or draught, the hull offsets may simply be multiplied by corresponding constant 
expansion or contraction factors. This   does    not    affect    the   secondary    parameters, i.e. CB, CM, CP, CWP, 
LCB and LCF. However, this variation will alter the displacement. In order to change length, while the 
displacement is fixed, the midship section area is altered in inverse ratio to the length. The breadth/draught ratio 
remains constant as well as the displacement, block coefficient and all secondary form parameters. The new 
main dimensions are: 

( )
L1

T'T
L1

B'BLL1'L
δ+

=
δ+

=δ+=  

Since  
B

'B
and 

T
'T
 are equal and  

L
'L
 is designer  specified,  the  waterlines  and  offsets  of   corresponding 

stations  can  be found using standard  naval architectural procedures. 
 
With  L  fixed  and B/T changing by a factor of 1 xδ+ , say, the changes in B and T now correspond to 
 

x1
T'T

x1
B'B

δ+
=

δ+
=  

 
and the corresponding changes in offsets and waterlines are undertaken in  the  usual  manner.  
 
6.2.2.2. Variation of Secondary Parameters of Hull Form 
 
6.2.2.2.1. Swinging the Sectional Area Curve 

 
This method enables to change LCB position by keeping the fullness constant. The sectional area curve of the 
parent ship represented by solid line ABC and the derived curve represented by the dotted line are illustrated in 
Figure 6.8. 
   
 
 
 
 
 
                             y

LCB  dLCB 

B

A

θy

dx

δx
C 

 
 

Figure 6.8. Swinging the sectional area curve to change LCB position. 
 
Let us consider a thin vertical strip of δx. The area of the element is δxy. Longitudinal transfer of moment of the 
strip due to swinging is 
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dM = δxy
2
1 dx = 

2
1 y2tanθδx 

M = tanθ
2
1

Σy2δx  

Vertical Moment   :  
2
1

Σy2δx = A y  

Longitudinal Moment  : A y tanθ = AdLCB 

     tanθ =
y

dLCB  

where 
 
θ  : Required angle of shift for adjusting the LCB position 
A  : total area under the sectional area curve ABC, indicating fullness 
y  : The vertical centroid of sectional area curve 
dLCB  : required change in LCB position 
 
Once the new positions of transverse sections are determined the modified offsets can be obtained directly from 
the waterlines plan of the parent form.  
 
Example 6.1: Consider a parabolic form, L=100 m long and B=10 m beam floating with a draught of T=10 m 
 

 
Figure 6.9. Parabolic form 

 

 
 

6.10. Body plan for the Parabolic form 
 

The half breadth values at equally spaced stations are given in the following table 
 

Station 0 1 2 3 4 5 6 7 8 9 10 
Breadth 0 3.6 6.4 8.4 9.6 10 9.6 8.4 6.4 3.6 0
Sectional area 0 36 64 84 96 100 96 84 64 36 0
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Due to the fore-aft symmetry the original position of LCB is amidships. The modified form has a position of 
LCB 5% L forward of midships. 
 
First, the sectional area curve of the original form should be evaluated as shown in the following table 
 

Station Area SM Product Area^2 SM Product 
0 0 1 0 0 1 0 
1 36 4 144 1296 4 5184 
2 64 2 128 4096 2 8192 
3 84 4 336 7056 4 28224 
4 96 2 192 9216 2 28432 
5 100 4 400 10000 4 40000 
6 96 2 192 9216 2 18432 
7 84 4 336 7056 4 28224 
8 64 2 128 4096 2 8192 
9 36 4 144 1296 4 5184 

10 0 1 0 0 1 0 
            Σ1 = 2000             Σ2 = 160064 

 

Displacement volume   V s m= =
3

6666 6661
3Σ .  

Moment     M s m= =
6

266773 3332
4Σ .  

Height of centroid    m40
V
My ==  

 
Then the angle of shift of stations is 
 

125.0
40
5

y
dLCBtan ===θ  

The amount of shift for each station can be calculated as follows 
 

Station 0 1 2 3 4 5 6 7 8 9 10 
dx 0 4.5 8.0 10.5 12.0 12.5 12.0 10.5 8.0 4.5 0 

 
The modified sectional area curve is shown in Figure 6.11.  The ordinates of the new sectional area curve can be 
read off as follows 
 

Station 0 1 2 3 4 5 6 7 8 9 10 
Area 0 25.27

8 
48.17
6 

67.61
0 

83.32
7 

94.42
8 

99.76
0 

97.55
6 

84.99
1 

56.86
4 

0 

 
Hydrostatic properties of the new form can be calculated as shown in the following table 
 

Station Area SM Product MC Product 
0 0 1 0 5 0 
1 25.278 4 101.112 4 404.448 
2 48.176 2 96.352 3 289.056 
3 67.610 4 270.440 2 540.880 
4 83.327 2 166.654 1 166.654 
5 94.428 4 377.712 0 0 
6 99.760 2 199.520 -1 -199.520 
7 97.556 4 390.224 -2 -780.448 
8 84.991 2 169.982 -3 -509.946 
9 56.864 4 227.456 -4 -909.824 
10 0 1 0 -5 0 

                       Σ1          = 1999.452                 Σ2 = -998.7 
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Displacement volume V s m= =
3

6664 8401
3Σ .  

Difference in volume dV =
−

⇒
6666 666 6664 840

6666 666
03. .

.
%0.  

LCB   LCB s m= =
Σ
Σ

2

1
4 995.    başa 

Difference in LCB dLCB =
−

⇒
4 995 0

100
995. %4.  

 

 
Figure 6.11. Sectional area curves for the original and modified forms 

 
The required shift of LCB is achieved with almost constant displacement. The body plan and a 3D view of the 
new form are shown in Figures 6.12 and 6.13 respectively.  
 

 
 

Figure 6.12. Body plan of the modified form 

 
 

Figure 6.13. 3D view of the modified form 
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Example 6.2. A mathematically defined (Wigley) form, L=16 m long,  B=1.6 m wide and T=1 m deep is defined 
by the following surface equation 

y x z B x
L

z
T

( , ) = − 
















− 















2
1 2 1

2 2

 

x : Longitudinal distance from midships (positive forward) 
y : half breadth at (x,z)  
z : height (positive downwards) 
 
Note that the form has fore-aft symmetry as shown in Figure 6.14. The body plan is shown in Figure 6.15. 

 
Figure 6.14. General view of Wigley form 

 

 
 

Figure 6.15. Body plan of Wigley form 
 

The position of LCB is required to shift aft by 7.5 %L. 
 

The following table indicates the maximum area and half breadth values  
Station 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
Half bradth 0 0.152 0.288 0.512 0.672 0.768 0.8 0.768 0.672 0.512 0.288 0.152 0 

Area 0 0.2027 0.3841 0.6826 0.896 1.024 1.067 1.024 0.896 0.6826 0.3841 0.2027 0 

 
First the general hydrostatic properties of the original form must be calculated as shown in the following table. 
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Station Area SM Product Area^2 SM Product 
0 0 1/2 0 0 1/2 0 
0.5 0.2027 2 0.4054 0.041 2 0.082 
1 0.3841 3/2 0.5762 0.147 3/2 0.221 
2 0.6826 4 2.7304 0.466 4 1.864 
3 0.8960 2 1.7920 0.803 2 1.606 
4 1.0240 4 4.0960 1.049 4 4.196 
5 1.0670 2 2.1340 1.138 2 2.276 
6 1.0240 4 4.0960 1.049 4 4.196 
7 0.8960 2 1.7920 0.803 2 1.606 
8 0.6826 4 2.7304 0.466 4 1.864 
9 0.3841 3/2 0.5762 0.147 3/2 0.221 
9.5 0.2027 2 0.4054 0.041 2 0.082 
10 0 1/2 0 0 1/2 0 

                          Σ1 =21.33              Σ2     =18.214 

Displacement volume V s m= =
3

113761
3Σ .  

Moment   M s m= =
6

4 8572
4Σ .  

Height of centroid m427.0
V
My ==  

Then the angle of shift is 81.2
427.0

88.6
y

dLCBtan −=
−

==θ  . The required shift of stations are shown in the 

following table 
 

Station 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
dx 0 -0.57 -1.08 -1.92 -2.52 -2.88 -3.0 -2.88 -2.52 -1.92 -1.08 -0.57 0 

 
The modified sectional area curve is shown in Figure 6.16. 
 
 

 
 

Figure 6.16. original and modified sectional area curves 
 

New sectional area ordinates are read off from the figure as follows 
 
Station 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
Area 0 0.515 0.767 1.00 1.067 1.038 0.948 0.814 0.647 0.452 0.236 0.119 0 

 
Hydrostatic properties of the new form are calculated as shown in the following table 
 
 

 6.20



Station Area SM Product MC Product 
0 0 1/2 0 5 0 
0.5 0.515 2 1.030 4.5 4.635 
1 0.767 3/2 1.151 4 4.604 
2 1.000 4 4.000 3 12.00 
3 1.067 2 2.134 2 4.268 
4 1.038 4 4.152 1 4.152 
5 0.948 2 1.896 0 0 
6 0.814 4 3.256 -1 -3.256 
7 0.647 2 1.294 -2 -2.588 
8 0.452 4 1.808 -3 -5.424 
9 0.236 3/2 0.354 -4 -1.416 
9.5 0.119 2 0.238 -4.5 -1.071 
10 0 1/2 0 5 0 

                        Σ1=21.313                 Σ2 =15.904 

Dsplacement volume V s m= =
3

113671
3Σ .  

Difference in volume dV =
−

⇒
11376 11367

11376
08. .

.
%0.  

LCB   LCB s m= =
Σ
Σ

2

1
1194.  kıça 

Difference in LCB  dLCB ⇒ %7.46
 
As indicated by the results the required shift is achived with good accuracy.  In order to obyain the offsets for the 
modified form stations are moved by dx and offsets are read off from the waterlines plan. The body plan and a 
3D view of the modified form are shown in Figures 6.17 and 6.18 respectively. 
 

 
 

Figure 6.17. Body plan of the modified Wigley form 
 

 
Figure 6.18. 3D view of the modified form 
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Example 6.3 : A cargo ship has the following dimensions; L=120 m,  B=18 m , T=8 m and D=12 m. The offsets 
of the ship are given in the following table. The body plan is shown in Figure 6.19. The position of LCB is 
required to move aft by 3 %. 
 
 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
WL0 
z=0m 

0.000 0.153 1.305 4.023 6.039 6.813 6.813 6.813 6.372 4.437 1.548 0.351 0.000 

WL0.5 
z=1m 

0.000 0.486 2.565 6.246 8.199 8.658 8.658 8.658 8.370 6.570 3.519 2.169 1.314 

WL1 
z=2m 

0.000 0.639 2.871 6.894 8.613 8.991 8.991 8.991 8.829 7.317 4.032 2.556 1.710 

WL2 
z=4m 

0.000 0.774 3.294 7.596 8.865 9.000 9.000 9.000 8.982 8.037 4.473 2.583 1.647 

WL3 
z=6m 

0.000 2.061 4.752 8.082 8.964 9.000 9.000 9.000 9.000 8.298 4.788 2.376 0.774 

WL4 
z=8m 

2.925 5.022 6.741 8.550 9.000 9.000 9.000 9.000 9.000 8.415 5.157 2.439 0.063 

WL5 
z=10m 

5.112 6.957 8.136 8.865 9.000 9.000 9.000 9.000 9.000 8.586 5.823 3.276 0.630 

WL6 
z=12m 

6.642 8.253 8.865 8.982 9.000 9.000 9.000 9.000 9.000 8.757 6.867 5.058 2.367 

Figure 6.19. Body plan of the basis ship 
Solution : 
 
First the sectional areas upto the draught level are calculated as shown in the following table. 
 
Sta 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
Half 
Bread
th 

2.925 5.022 6.741 8.550 9.000 9.000 9.000 9.000 9.000 8.415 5.157 2.439 0.063 

Area 4.6165 23.386 60.072 117.02 137.57 141.07 141.07 141.07 139.57 121.93 68.01 37.04 17.882 

 
Then, basic hydrostatic properties of the basis form, including the vertical centroid of the sectional area curve 
has to be calculated. This can be achieved by numerical integration rules as shown in the following table. 
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Sta Area SM Product MC Product Area^2 SM Product 
0 4.6165 1/2 2.3083 5 11.54125 21.312 1/2 10.656
0.5 23.3857 2 46.771 4.5 210.4713 546.8910 2 1093.782
1 60.0722 3/2 90.108 4 360.4332 3608.669 3/2 5413.004
2 117.0212 4 468.085 3 1404.254 13693.96 4 54775.84
3 137.5697 2 275.139 2 550.2788 18925.42 2 37850.84
4 141.07261 4 564.290 1 564.2904 19901.48 4 79605.92
5 141.07261 2 282.145 0 0 19901.48 2 39802.96
6 141.07261 4 564.290 -1 -564.2904 19901.48 4 79605.92
7 139.5754 2 279.151 -2 -558.3016 19481.29 2 38962.58
8 121.9288 4 487.715 -3 -1463.145 14866.63 4 59466.52
9 68.0098 3/2 102.015 -4 -408.0588 4625.330 3/2 6937.995
9.5 37.0407 2 74.0814 -4.5 -333.3663 1372.013 2 2744.026
10 17.8823 1/2 8.9412 5 -44.70575 319.7766 1/2 159.888

                     Σ1=3245.04                 Σ2 =-270.6                           Σ3 =406429.9 
 

Displacement volume  3
1 m2.12980

3
s

=Σ=∇  

Block coefficient   751.0
818120

2.12980
LBT

CB =
××

=
∇

=  

Longitudinal centre of buoyancy  m1
04.3245
6.27012sLCB

1

2 ==
∑
∑

=   forward 

Vertical moment   4
2 m9.812859

6
sM =Σ=  

Vertical centroid of SAC  m623.62
V
Mz ==  

 

Then 0575.0
623.62
6.3

z
dLCBtan ===θ . The amount of shift for each station, dx=ytanθ, are shown in the 

following table. 
 
Sta 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
dx 0.266 1.350 3.467 6.753 7.939 8.141 8.141 8.141 8.054 7.036 3.925 2.137 1.032 

 
The original and modified sectional area curves are shown in the following figure. 

 
Figure 6.20. The basis and modified sectional area curves 
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Sectional area values for the variant form can be read off from the sectional area curve as follows 
 

Sta 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
A 5.175 2 949 .65 .67 .05 .05 .87 .76 .24 508 7 8 34.80 88. 133 140 141 141 140 131 100 51. 30.47 15.41

 
asic hydrostatic characteristics of the variant hull forms can be calculated as follows B

 
Sta Area SM Product MC Product 
0 5.175 8 81/2 2.58 5 12.93
.5 4.802 2 9.604 .5 13.218
1 88.949 3  1/2 33.424 4 533.694
2 1 133.651 4 534.604 3 603.812
3 140.667 2 281.334 2 562.668
4 141.051 4 564.204 1 564.204
5 141.051 2 282.102 0 0.000
6 140.865 4 563.460 -1 -563.460
7 131.756 2 263.512 -2 -527.024
8 100.240 4 400.960 -3 -1202.880
9 51.508 3  /2 77.262 -4 -309.048
.5 30.477 2 60.954 4.5 -274.293

10 15.418 1/2 7.709 5 -38.545
             1.716      675.284 

0 3 6 4  3

9 -

                Σ1= 324                Σ2 =

Displacement volume  

 
3

1 m864.12966
3
s

=Σ=∇  

1.0%
2.12980

864.129662.12980d ⇒
−

=∇  Difference in displacement 

Block coefficient   750.0
818120

864.12966
LBT

CB =
××

=
∇

=  

 

LCB     m5.2sLCB
1

2 =
Σ
Σ

=     aft 

Difference in LCB  9.2%
120

15.2dLCB ⇒
+

=  

 
hese results indicate that the required position of LCB is achieved with negligible difference in displacement. T

In order to obtain the new hull form each waterline needs to be varied in a similar manner as the sectional area 
curve. For example, the modified WL 2 is shown in Figure 6.21.  The offsets of the modified form are read off 
from the waterlines. The body plan of the modified form is shown in Figure 6.22. 
 

Figure 6.21. Original and modified Waterlines. 
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Figure 6.22. Original and modified forms 
 
An obvious disadvantage of this method is that the extent of parallel middle body cannot be controlled. Also the 
midship section characteristics may alter. However, for small changes in the position of LCB this may not be a 
serious problem. 

 
6.2.2.2.2. One Minus Prismatic Method 

 
The basis of this method is to adjust the sectional area curve of the basic ship form by contracting or expanding 
the entrance and run and reducing or increasing the parallel middle body length as necessary. New offsets can be 
obtained directly from the parent design. The new form is subjected either to expansion or contraction depending 
on the desired form characteristics. These adjustments are likely to influence some of the geometric particulars 
like LCB (longitudinal centre of buoyancy) position, CP (prismatic coefficient) and the extent of the parallel 
middle body in both the fore and after bodies. 
 
The curve in Figure 6.23 represents the sectional area curve of the parent ship for one half of the body. For 
convenience, the terms given in this study are not separated for entrance and run, and valid for both halves of the 
ship. It is necessary to consider this half body and maximum sectional area ordinate as equal to unity. Therefore, 
the area under the curve becomes numerically equal to the prismatic coefficient of the half body and the added 
slice represents the change in CP, indicated by δCP. 
 

 
                 x                     δx 
 

Figure 6.23. Geometrical derivation of shifting function. 
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According to Figure 6.23 the linear shift of dimensionless sectional area ordinates (δx) is obtained by using the 
proportionality of the areas before and after the distortion procedure. Hence, δx is derived as follows: 
 

 )x1(
C1

C
x

x1
x

BCD
D'BB

P

P −
−
δ

=δ⇒
−
δ

=      

 
It can clearly be seen from Figure 6.23 that the variation of CP produces inevitable changes in the parallel middle 
body length  (p), according to the modifications of the entrance and run, e.g., at x = p 

)p1(
C1

Cp
P

P −
−
δ

=δ  

 
In order to change the total prismatic coefficient (CP) and/or the longitudinal centre of buoyancy (LCB),  the 
required changes in fore and afterbodies must be determined. This can be achieved by taking moments as 
follows 
 

[ ]

[ ]
)hh(

)CC(LCB2)LCBh(C2C

)hh(
)CC(LCB2)LCBh(C2

C

af

PPfP
PA

af

PPaP
PF

+
δ+δ−−δ

=δ

+
δ+δ++δ

=δ

 

where 
 
CP : prismatic coefficient of the parent form 
δCP : the required change in prismatic coefficient 
LCB : the distance of the LCB in the parent form (positive forward) 
δLCB : the required shift of the LCB 
δCPF : the change in forebody prismatic coefficient 
δCPA : the change in afterbody prismatic coefficient 
hf : centroid of the added area in the forebody 
ha : centroid of the added area in the afterbody 
 
The exact values of levers hf and ha can be calculated by the following relations 
 

[ ]

[ ])x1(C21
)C1(2

C
C1

)x21(C
h

)x1(C21
)C1(2

C
C1

)x21(Ch

aPA2
PA

PA

PA
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a

fPF2
PF

PF

PF

fPF
f

−−
−
δ

+
−

−
=

−−
−
δ

+
−

−
=

 

 
where CPF and CPA are the prismatic coefficients for fore and afterbodies, and fx and ax are the centroids of the 
original fore and afterbodies.  However, since δCPF and δCPA are not known hf and ha cannot be determined 
exactly and the second term may be ignored, i.e., 
 

PA

aPA
a

PF

fPF
f

C1
)x21(C

h

C1
)x21(C

h

−
−

=

−
−

=

 

 
This technique of form distortion is useful and relatively simple to apply but there are some restrictions, which 
are: 
 
• The parallel middle body length and the prismatic coefficient cannot be varied independently, 
• The prismatic coefficient of the fore and aft halves can not be adjusted, 
• The process cannot be applied to some types of forms, e.g., ships which has no parallel middle body, 

 6.26



• There is limitations in the range of longitudinal shift of sections, 
• The maximum longitudinal shift of sections is restricted to the ends. 
 
An application of this variation procedure is shown in Figure 6.24 where the block coefficient is increased by 
5% . 
 

 

dx 
dx

x x 

Figure 6.24 
 
Example 6.4 : As a first example consider a parabolic form L=100 m long,  B=10 m beam, floating with a 
draught of T=10 m. A 3D view and the body plan area shown in the following figures. 
 
The breadth and area of each section are given in the following table. The prismatic coefficient is required to 
increase by 10 % while the location of LCB remaining constant. 
 

Station 0 1 2 3 4 5 6 7 8 9 10 
Breadth 0 3.6 6.4 8.4 9.6 10 9.6 8.4 6.4 3.6 0 
Area 0 36 64 84 96 100 96 84 64 36 0 

 
Figure 6.25. Parabolic form general view 

 

 
Figure 6.26.  Parabolic form body plan 
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First, the original values of CP and LCB has to be determined. Due to fore-aft symmetry it is clear that the 
position of LCB  amidships. 
 

Station Area SM Product 
0 0 1 0 
1 36 4 144 
2 64 2 128 
3 84 4 336 
4 96 2 192 
5 100 4 400 
6 96 2 192 
7 84 4 336 
8 64 2 128 
9 36 4 144 
10 0 1 0 

              Σ1= 2000  
 

Displacement volume   V s m= =
3

6666 6661
3Σ .  

Prismatic coefficient    C C
LBTP B= =

∇
=

× ×
=

6666 666
100 10 10

0 666. .  

 
Change in prismatic coefficient    dC CP P= × =01 0 0666. .  
 

The required shift of each station is determined by using dx
dC

C
L xP

P
=

−
−

1 2
( )  as follows 

Station 0 1 2 3 4 5 6 7 8 9 10 
dx 0 2 4 6 8 10 8 6 4 2 0 

 
The result of the movement of stations is shown in Figure 6.27. The modified values of  SAC are read off from 
the curve as follows. 
 
Station 0 1 2 3 4 5 6 7 8 9 10 

0 43.847 74.962 93.798 100 100 100 93.798 74.962 43.847 0 Area 
 
The volume, prismatic coefficient and LCB values for the modified form are calculated in the following table 
 

Station Area SM Product MC Product 
0 0 1 0 5 0 
1 43.847 4 175.388 4 701.552 
2 74.962 2 149.924 3 449.772 
3 93.798 4 375.192 2 750.384 
4 100 2 200 1 200 
5 100 4 400 0 0 
6 100 2 200 -1 -200 
7 93.798 4 375.192 -2 -750.384 
8 74.962 2 149.924 -3 -449.772 
9 43.847 4 175.388 -4 -701.552 
10 0 1 0 -5 0 

                        Σ1     = 2201.008           Σ2 = 0 
 

Displacement volume  V s m= =
3

6664 8401
3Σ .  

Prismatic coefficent  C C
LBTP B= =

∇
=

× ×
=

7336 693
100 10 10

0 733. .  
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LCB    m0s
1

2 =
Σ
Σ

=LCB  

 
The results indicate that the required change in prismatic coefficent is obtained while the position of LCB kept 
constant. The body plan and a 3D view of the new form are shown in Figures 6.28 and 6.29, respectively. 
 

 
Figure 6.29.  Original and modified sectional area curves 

 

 
 

Figure 6.30. Body plan of the original and modified forms 
 

 
 

Figure 6.31. 3D view of the modified form 
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Example 6.5.  A cargo ship has the following dimensions. L=120 me, B=18 m, T=8 m and D=12 m. The offsets 
are given in the following table. The body plan is shown in Figure 6.32. The prismatic coefficient is require tı 
increase by 2% while the position of LCB is shifted forward by 1% L.  
 
 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
WL0 
z=0m 

0.000 0.153 1.305 4.023 6.039 6.813 6.813 6.813 6.372 4.437 1.548 0.351 0.000

WL0.5
z=1m 

0.000 0.486 2.565 6.246 8.199 8.658 8.658 8.658 8.370 6.570 3.519 2.169 1.314

WL1 
z=2m 

0.000 0.639 2.871 6.894 8.613 8.991 8.991 8.991 8.829 7.317 4.032 2.556 1.710

WL2 
z=4m 

0.000 0.774 3.294 7.596 8.865 9.000 9.000 9.000 8.982 8.037 4.473 2.583 1.647

WL3 
z=6m 

0.000 2.061 4.752 8.082 8.964 9.000 9.000 9.000 9.000 8.298 4.788 2.376 0.774

WL4 
z=8m 

2.925 5.022 6.741 8.550 9.000 9.000 9.000 9.000 9.000 8.415 5.157 2.439 0.063

WL5 
z=10m 

5.112 6.957 8.136 8.865 9.000 9.000 9.000 9.000 9.000 8.586 5.823 3.276 0.630

WL6 
z=12m 

6.642 8.253 8.865 8.982 9.000 9.000 9.000 9.000 9.000 8.757 6.867 5.058 2.367

Figure 6.32. Body plan of the parent form 
 
Half breadth and sectional areas of the parent form are given in the following table. 
Sta 0 0.5 1 2 3 4 5 6 7 8 9 9.5 10 
b 2.925 5.022 6.741 8.550 9.000 9.000 9.000 9.000 9.000 8.415 5.157 2.439 0.063 

A 4.6165 23.386 60.072 117.02 137.57 141.07 141.07 141.07 139.57 121.93 68.01 37.04 17.882 

 
Basic hydrostatic characteristics of the parent form are calculated as follows 

Sta Area SM Product MC Product 
0 4.6165 1/2 2.30825 5 11.54125 

0.5 23.3857 2 46.7714 4.5 210.4713 
1 60.0722 3/2 90.1083 4 360.4332 
2 117.0212 4 468.0848 3 1404.254 
3 137.5697 2 275.1394 2 550.2788 
4 141.0726 4 564.2904 1 564.2904 
5 141.0726 2 282.1452 0 0 
6 141.0726 4 564.2904 -1 -564.2904 
7 139.5754 2 279.1508 -2 -558.3016 
8 121.9288 4 487.7152 -3 -1463.145 
9 68.0098 3/2 102.0147 -4 -408.0588 

9.5 37.0407 2 74.0814 -4.5 -333.3663 
10 17.8823 1/2 8.94115 5 -44.70575 

               Σ1 = 3245.04                          Σ2 =-270.6  
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Displacement volume  3
1 m2.12980

3
s

=Σ=∇  

Block coefficient   751.0
818120

2.12980
LBT

CB =
××

=
∇

=  

Midship section coefficient 98.0
818

0726.141
BT
AC M

M =
×

==  

Prismatic coefficient  767.0
98.0
751.0

C
CC

M

B
P ===  

Longitudinal centre of buoyancy m1
04.3245
6.27012sLCB

1

2 ==
∑
∑

=   (%0.8333 L)   forward 

CPF, CPA, fx  and ax are calculated in the following table. 
 

Sta A A’ SM Product MC Product 
0 4.6165 0.0327 1/2 0.0164 5 0.0818

0.5 23.3857 0.1651 2 0.3301 4.5 1.4855
1 60.0722 0.4258 3/2 0.6387 4 2.5549
2 117.0212 0.8295 4 3.3180 3 9.9541
3 137.5697 0.9752 2 1.9503 2 3.9007
4 141.0726 1.0000 4 4.0000 1 4.0000
5 141.0726 1.0000 1 1.0000 0 0.0000
   Σ1 = 11.2536 Σ3 = 21.9771

5 141.0726 1.0000 1 1.0000 0 0.0000
6 141.0726 1.0000 4 4.0000 1 4.0000
7 139.5754 0.9894 2 1.9788 2 3.9575
8 121.9288 0.8643 4 3.4572 3 10.3716
9 68.0098 0.4821 3/2 0.7231 4 2.8925

9.5 37.0407 0.2626 2 0.5251 4.5 2.3631
10 17.8823 0.1268 1/2 0.0634 5 0.3169

   Σ2 = 11.7476 Σ4 = 23.9017
  

Afterbody prismatic coefficent   =∑×= 1PA 3
2.0C 0.7502    

Forward prismatic coefficient   =∑×= 2PF 3
2.0C 0.7832 

Centroid of afterbody    3906.02.0x
1

3
a =

∑
∑

×=     

Centroid of forebody    4069.02.0x
2

4
f =

∑
∑

×=     

h levers are calculated as follows: 

6571.0
7502.01

)3906.021(7502.0
C1

)x21(Ch

6727.0
7832.01

)4069.021(7832.0
C1

)x21(Ch

PA

aPA
a

PF

fPF
f

=
−

×−×
=

−
−

=

=
−

×−×
=

−
−

=

 

The required changes in the prismatic coefficents of fore and afterbody are as follows 
 

[ ]

[ ] 03888.0
6727.06571.0

)767.002.0767.0(01.02)00833.06571.0(767.002.02Cδ

)hh(
)CδC(LCBδ2)LCBh(Cδ2

Cδ

PF

af

PPaP
PF

=
+

×+××++××
=

+
+++

=
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[ ]

[ ] 00820.0
6727.06571.0

)767.002.0767.0(01.02)00833.06727.0(767.002.02Cδ

)hh(
)CδC(LCBδ2)LCBh(Cδ2Cδ

PA

af

PPfP
PA

−=
+

×+××−−××
=

+
+−−

=
 

 
Then the required change of stations are 

)x
2
L(

7502.01
00820.0)x

2
L(

C1
dCdx

PA

PA
A −

−
−

=−
−

=  

 Afterbody 
Sta 0 0.5 1 2 3 4 5 
x 0 6 12 24 36 48 60 
dx 0 -0.1968 -0.3936 -0.7872 -1.1808 -1.5744 -1.968 
x’ 0 5.8032 11.6064 23.2128 34.8192 46.4256 58.032 

)x
2
L(

7832.01
03888.0)x

2
L(

C1
dCdx

PF

PF
F −

−
=−

−
=  

 Forebody 
Sta 5 6 7 8 9 9.5 10 
x 60 72 84 96 108 114 120 
dx 10.758 8.6064 6.4548 4.3032 2.1516 1.0758 0 
x’ 70.758 80.6064 90.4548 100.3032 110.1516 115.0758 120 

 
The original and modified sectional area curves are shown in Figure 6.33. In order to obtain the modified hull 
form each waterline is to be shifted by dx as shown in Figure 6.34. New offsets then can be read of from the 
waterlines and the modified form is shown in Figure 6.35. 

Figure 6.33. Original and modified sectional area curves  

Figure 6.34. Original and modified waterlines 
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Figure 6.35. Original and modified body plans 

 
6.2.3. Lines Creation Approach 
 
Linear distortion methods such as the Lackenby's method as described above, enables the designer to derive a 
series of hull forms by a systematic change in the locations of the stations at which the offsets are given. That is, 
the shape of the sections remains the same as in the parent hull, but they are moved forward or aft in some 
manner so that the curve of sectional areas changes.  However, in many cases a parent hull form may not be 
available therefore the hull form may have to be created from scratch. In such cases a lines creation approach 
may be adopted to generate a feasible hull form. The lines creation procedures could be applied in the following 
order 
 
• Estimation of main dimensions 
• Estimation of hull form parameters 
• Evaluation of a sectional area curve and a design waterline 
• Creation of section lines 
 
The first two elements of the process are dealt with in the first parts of these chapters. Having estimated the main 
dimensions and hull form parameters a sectional area curve and a design waterline may be obtained by using 
suitable polynomials. 
 
For example, let us assume that the sectional area curve is represented by a fifth degree polynomial in the 
following manner 

5
5

4
4

3
3

2
210 xaxaxaxaxaa)x(A ′+′+′+′+′+=′′  

where 

L
LCBBLC

L
xx

C.T.B
A)x(A

M

=′=′=′  

The boundary conditions may be applied as follows 
 

1)5.0(A
0)1(A

AaA)0(A tr0tr

=′
=′

′=→′=′

 

dx
dA

0.5=0                  ∫ =′′′
1

0
PCxd)x(A )

100
BLC5.0(Cxdx)x(A

1

0
P

′
−=′′′∫  

We have 6 unknowns and 6 equations. By using the condition x′= 0.5, a1 and a2 can be obtained in terms of 
other unknown parameters. 
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The following system of equations must be solved 
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The unknown coefficients for the case of CP = 0.7,  2.0A,2BLC tr =′=′  are as follows: 

a1 =  3.56 

a2 = -6.32 

a3 =  9.28 

a4 = -11.2 

a5 =  4.48 
Then the equation of the sectional area curve is 

5432 x48.4x2.11x28.9x32.6x56.32.0)x(A ′+′−′+′−′+=′′  

 

 

 

 

 

 
This polynomial representation is shown in the following figure 
 
 
The existence of a parallel middle body will require further conditions. For instance two more conditions 
representing the forward and aft portions of the parallel middle body will result ina 7th degree polynomial as 
follows 
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The following boundary conditions may be used 
 
1.  ayna0ayna AaA)0(A ′=→′=′

2.  0)1(A =′
3.  1)p(A A =′
4.  1)p(A F =′

5. 
dx
Ad ′

pA=0           

6. 
dx
Ad ′

pF=0           

7.          ∫ =′′′
1

0
PCxd)x(A

8. )
100

BLC5.0(Cxdx)x(A
1

0
P

′
−=′′′∫  

Where pA and pF represent the forward and aft portions of the parallel middle body. Then we 
have eight unknowns and eight conditions. 
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The unknown coefficents may be obtained by solving the following system of equations. 
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Example 4.2.  Generate a sectional area curve for CP = 0.8,  2.0A,2BLC ayna =′=′ . The ship 
has a symmetrical parallel middle body with a length of 20% of ship’s length, in which case  
pA=0.4 and pF=0.6 
 
The sectional area curve is assumed to be represented by a 8th degree polynomial for which 
the unknown coefficients are calculated as follows 
 

a1 =  6.65245 

a2 = -25.51791 

a3 =  74.64714 

a4 = -184.73191 

a5 =  301.93469 

a6 =  -258.16271 

a7 =  84.97825 

 
The nondimensional sectional area curve is shown in the following figure 

Figure 6.36. Sectional area curve 
 
This method can easily be applied to design waterline, in which case CP and LCB are replaced 
by CWP and LCF. Provided that sectional area and sectional beam of sections along the length 
are determined a body plan can be obtained by a graphical method as shown in Figure 6.37. 
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Figure 6.37.  Lines creation approach 

 
Under the assumption that a sectional form can be defined by a limited set  of  parameters,  Lackenby's  linear 
distortion method can also be applied to design waterline curve in a similar way it  is  applied  to the  sectional  
area  curve.   
 
Therefore, given the desired changes in LCB, CWP and LCF, the designer can, for each section, calculate 
sectional beam, draught, and area.  This  information  is  sufficient  for  defining,  by conformal mapping 
transformations, a concrete underwater section shape, namely a Lewis section.  
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The  suitability  of  conformal mapping techniques for the approximate representation of 
underwater sections of ships has been well known  at least  since Lewis (1929) adopted this 
approach to calculate the added mass of ships. Lewis used mapping functions with three terms 
and hence three free parameters, which enabled him to  control  the  beam, draught,  and  area 
of the section. Evidently, by including more terms and free coefficients in the mapping 
transformation it is possible  to control  more  features  of  section shape. Von Kerzcek and 
Tuck (1969) demonstrated that it took only relatively  few  terms  in the  mapping  function  
to obtain very close 
 
approximations to a broad range of realistic ship section shapes. 
 
Main advantage of conformal mapping is that the sections generated are represented  by  a  single  set of  
mathematical equation which greatly simplifies  certain   hydrostatic   and   hydrodynamic   calculations. 
Moreover, the section shapes generated by conformal mapping tend to be automatically  fair  in  the  manner  of  
streamline shapes and do not exhibit rapid oscillations. 
 
However, the designer may want to control the section character in the direction  of  more  U-shaped  or V-
shaped sections, keeping the other section parameters the same. This is feasible within the scope of  the 
conformal mapping method by introducing extra parameters. One drawback of  section  shapes  derived  by  
mapping  for  the circle is that the tangent to the  section  at  the  waterline  is  vertical,  making  it difficult  to  
represent  sections  with flare. This can be avoided by using polynomials for the above water form,  matching  
the  underwater form at a point slightly below the waterline. 
 
The fundamental problem to be solved in applying the conformal mapping technique  is  the determination of the 
mapping function corresponding to a given sectional curve.  Unfortunately,  this  problem  cannot  be solved  in  
closed form but in some simple, special cases. In general, approximate  methods  and  numerical  techniques  
should  be  used.  A succesful  choice of the mapping technique is primarily dependent upon the desired accuracy 
and  the  kind  of  data  used  in  defining  the sectional curve. such data can be classified into three categories: 
 
• A set of points on the curve, 
• A  number  of  local properties, other than points, of the curve; e.g. the slope of the curvature at given 

points, and 
• A number of global properties of the curve; e.g. the area, breadth, draught, and various moments with 

respect to the axes. 
 
When  the  problem  is to accurately  represent an actual section shape, first two categories of data are  used.  
However,  in  the  hull  form variation, the problem is to be able to create a section shape using a small  number  
of  parameters to be used in hydrodynamic calculations. several families of conformal mapping functions have  
been  developed, most convenient ones being the two-parameter family introduced by Lewis  (1929)  and  the 
three-parameter family by Landweber and Macagno (1959). 
 
Limiting the problem to conventional ship sections only and assuming a mirror  image  about  both axis of 
symmetry and the free surface, that is, symmetry about both the x and y axes, the mapping function can be 
reduced to, 

∑ ∞<<∞−ζ=
n

nn ncz  

or 

∑
=

−
− ζ+ζ=

2n

n1
1n0 ccz  

 
where z and ζ  are the complex variables, 
 

θ=η+ξ=ζ+= iReiandiyxz  
 
and  the coefficients an are real. Due to the symmetry with respect to the both axes, only a single quadrant need 
be considered  for  each section as illustrated in Figure 
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Figure 6.38. Mapping a Ship Section to a Circle 
 
In the ζ -plane, for a unit circle where the radius of the circle is 1, and 
 

θ+θ==ζ θ sinicosei  
 

Substituting  {\bf  (8.22)}  into {\bf (8.23)} and separeting real and imaginary parts, one gets 
 

θ−++θ+θ+θ=θ − )1N2cos(a...3cosacosacosa)(x 1N2310  

θ−−−θ−θ−θ=θ − )1N2sin(a...3sinasinasina)(y 1N2310  
 
where  the ais are called mapping coefficients and varying θ  from 0 to π  the section contour can be described. 
 
 The  two  parameter  mapping introduced by Lewis (1929) utilizes the first three terms of the equations   
 

θ+θ+θ=θ 3cosacosacosa)(x 310  

θ−θ−θ=θ 3sinasinasina)(y 310  
 

Let  b  denote the half-beam of the section at the waterline and T the draught. Since x=b when  =0 and y=T 
when    =  /2,  from  equation  {\bf  (8.24)},  the  half-beam  and  draught are obtained as follows 

θ
θ π

  

310

310

aaa)
2

(yT

aaa)0(xb

+−=
π

=θ=

++==θ=
 

 
Sectional area of the contour is given by, 
  

∫
π

θ
θ
θ

θ=
2/

0

d
d

)(dy)(xS  

which becomes 
 

( )2
3

2
1

2
0 a3aa

2
S −−

π
=  

 
Given   the  sectional  half-beam,  draught,  and  area,  the  mapping coefficients can be determined as follows 
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where  b,  T,  S  are the half-beam, draught and the sectional area, respectively.  
 

Half beam – draught ratio   
T
b

=λ  

Sectional area coefficent    
bT2
S

=σ  

 
Then 
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π
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−+λ=

418)1(
4
1)1(

4
1a

)1(
2
1a

a)1(
2
1a

2
3

1

30

 

 
It  can be seen  that the slope of the section is infinite at the waterplane (vertical tangent at θ ), and zero at 
the keel (horizontal tangent at ).  This  is  a consequence  of  the  corresponding properties of the unit 
circle, the conformality of the mapping, and the regular character of the  mapping function on the section 
contour. Therefore, sections with flare in the waterplane  cannot  be  represented  by  conformal mapping. One 
way of getting around this difficulty is instead of mapping all the way  from 

0=
2/π=θ

0=θ  to , to carry it out 
starting from a fixed value of ,  say  from  

2/π=θ
θ 20/π=θ  to 2/π=θ . At this starting point  which  is  slightly  

below  the  waterline,  conformal  mapping equation  can  be  matched  with  the  offset  slope  and possibly the 
curvature of above water polynomial. 
 
The  viability  of  a lines creation method based on conformal mapping depends on the range of shapes that can 
be created by this  technique. For  Lewis  forms,  Von Kerzcek and  Tuck (1969) have determined the limits of 
feasible practicle shapes and dicussed how the  sections degenerate  into  tunneled,  bulbous, reentrant forms as 
shown in Figure . 
 
The  reentrant form is characterized by the property that x<0 and/or y>0 for some θ   in  the  fourth  quadrant.  
Equations  {\bf (8.24)}  and  {\bf  (8.30)},  and  the  requirement that  and  for 0x ≥ 0y ≤ 2/0 π≤θ≤  
yields the inequalities 
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Thus  to avoid reentrant forms we take {\bf (8.38)} if 1≤λ  and {\bf (8.39)} if 1>λ . In terms  of  the  half-
beam/draught ratio and sectional area coefficient we have, 
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Forms  on  the  borderline  between  the  rentrant  and  non-renetrant categories are cusped at the waterline or the 
keel. 
 
The  next  two categories are conventional forms, in which x and y are monotone functions of , and bulbous 
forms, with  x  not monotone.  A  third category is the tunneled form which are similar to bulbous forms turned 
clockwise through 90 degrees. The definition of conventional  forms   requires   that    
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Örnek 4.3.  Form karakteristikleri aşağıda verilen geminin su altı formunu temsil eden ofset 
değerlerinin eldesi istenmektedir. 
L   : 100 m 
B   :  20 m 
T   :  10 m 
CM   : 0.98 
CP   : 0.75 
LCB   : % 2 L kıç 
CWP   : 0.85 
LCF   : % 4 L kıç. 
Kıç kesit alan oranı  : 0.2 
Kıç genişlik oranı  : 0.7 
Öncelikle uygun dereceden polinomlar seçilerek kesit alan eğrisi ve dizayn su hattı eğrisi 
aşağıdaki şekillerde görülen şekilde oluşturulur. 
 
 

Şekil 6.39. Örnek gemiye ait en kesit alanları ve yüklü su hattı eğrileri 
 

Herbir kesitteki yarı genişlik ve kesit alanı değerleri ile su çekimi değerlerinden yararlanılarak eşit aralıklı 20 
keside ait kesit formları aşağıdaki şekilde görüldüğü şekilde elde edilir. 
 
 
 
 
 

Şekil 6.40. Örnek gemiye ait kesit formları 
 
Exercise.  Form karakteristikleri aşağıda verilen geminin su altı formunu temsil eden ofset 
değerlerinin eldesi istenmektedir. 
L   : 100 m 
B   :  20 m 
T   :  10 m 
Kıç kesit alan oranı  : 0.2 
Kıç genişlik oranı  : 0.7 
 
KOD 1 2 3 4 5 6 7 8 9 
CM 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 
CP 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 
LCB 2%L 

aft 
2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

CWP 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 
LCF 2%L 

aft 
2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

 
KOD 10 11 12 13 14 15 16 17 18 
CM 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 
CP 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 
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LCB 2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

CWP 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 
LCF 2%L 

aft 
2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

 
KOD 19 20 21 22 23 24 25 26 27 
CM 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
CP 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 
LCB 2%L 

aft 
2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

CWP 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 
LCF 2%L 

aft 
2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

 
KOD 28 29 30 31 32 33 34 35 36 
CM 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 
CP 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 
LCB 1%L 

aft 
1%L 
aft 

1%L 
aft 

1%L 
aft 

1%L 
aft 

1%L 
aft 

1%L 
aft 

1%L 
aft 

1%L 
aft 

CWP 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 
LCF 2%L 

aft 
2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 

2%L 
aft 
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